FINAL

ORDOT DUMP ORDOT-CHALAN PAGO, GUAM

Environmental Data Summary Report

Prepared for
Department of Public Works, Government of Guam
542 North Marine Drive
Tamuning, Guam 96911

July 2005

Prepared by

Dueñas & Associates Project Team (Dueñas & Associates, Inc. URS Corporation, and Mink & Yuen, Inc.)

155 E.T. Calvo Memorial Parkway, Suite 200 Tamuning, Guam 96913 (671) 646-7991

TABLE OF CONTENTS

			Page	
1.0	INT	RODUCTION	1	
	1.1	BACKGROUND	1	
	1.2	OBJECTIVES	1	
2.0	SITE	DESCRIPTION	3	
	2.1	LOCATION	3	
	2.2	HISTORY	3	
3.0	SITE CHARACTERISTICS			
	3.1	GEOLOGY AND HYDROGEOLOGY	5	
	3.2	MONITORING WELLS AND BORINGS		
	3.3	SURFACE WATER		
	3.4	GROUNDWATER	7	
4.0	WASTE CHARACTERISTICS			
	4.1	WASTE CHARACTERISTICS	10	
	4.2	WASTE QUANTITIES	11	
5.0	SUM	MARY OF EXISTING ENVIRONMENTAL DATA		
	5.1	EXISTING REPORTS REVIEWED		
	5.2	OTHER REPORTS		
	5.3	EXISTING ENVIRONMENTAL DATA	15	
		5.3.1 Leachate	16	
		5.3.2 Groundwater	18	
		5.3.3 Surface Water		
		5.3.4 Sediment		
	5.4	LIMITATIONS OF AVAILABLE ANALYTICAL DATA	21	
6.0	CON	CEPTUAL SITE MODEL AND EXPOSURE PATHWAYS		
	6.1	CONCEPTUAL SITE MODEL		
	6.2	EXPOSURE PATHWAYS		
		6.2.1 Human Health Exposure		
		6.2.2 Ecological Exposure	25	
7.0	DAT	A GAP ASSESSMENT AND RECOMMENDATIONS		
	7.1	DATA NEEDS FOR RISK ASSESSMENT		
		7.1.1 Human Health	27	
		7.1.2 Ecological	28	
	7.2	ENVIRONMENTAL DATA GAPS AND RECOMMENDATIONS BY	20	
		MEDIUM		
		/ 211		
		6,		
		7.2.3 Groundwater	30	

7.3	7.2.4 Surface Water 7.2.5 Sediment 7.2.6 Biota SAMPLE QUANTITATION LIMIT REQUIREMENTS	.33
8.0 REF	ERENCES	36
TABLES		
Table 1 Table 2 Table 3 Table 4 Table 5	Borings and Wells in Ordot Dump Area Summary of Reports Reviewed Surface Water and Leachate Analytical Results Groundwater Analytical Results Sediment Analytical Results	
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6	Site Location Map North-South Geologic Cross Section Structure Contour Map on Top of Volcanic Rocks Monitoring Well Locations Historical Leachate, Surface Water, and Sediment Sampling Locations Conceptual Site Model	
APPENDIC	ES	
Appendix A Appendix B Appendix C	Boring Logs Analytical Results for Leachate, Surface Water, Groundwater, and Sediment USGS Project Synopsis Report, June 2003. Impact of Ordot Dump on Water Quality of Lonfit River Basin in Central Guam	

ACRONYMS

bgs below ground surface
BOD biological oxygen demand
CDM Camp, Dresser, & McKee, Inc.

cm/sec centimeters/second COD chemical oxygen demand

COPC contaminant of potential concern

CSM conceptual site model CWA Clean Water Act

D&A Dueñas and Associates, Inc.
DDT dichlorodiphenyltrichloroethane

DOJ Department of Justice

DPW Department of Public Works

DQO data quality objective

EBS Environmental Baseline Survey

FS Feasibility Study FSP field sampling plan

ft/day feet/day

GEPA Guam Environmental Protection Agency

gpd gallons per day

gpda gallons per day per acre GTA Greenleaf/Telesca-Ahn

GWQS Guam Water Quality Standards

JCTA Juan C. Tenorio & Associates, Inc.

MCL Maximum Contaminant Level

mgd million gallons per day

MSL mean sea level
NGL Northern Guam Lens
NGLS Northern Guam Lens Study

NOV Notice of Violation

PAH polynuclear aromatic hydrocarbon

PCB polychlorinated biphenyl PRG Preliminary Remediation Goal

QA quality assurance

QA/QC quality assurance/quality control quality assurance project plan

RA risk assessment

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation ROD Record of Decision

SAP sampling and analysis plan
SQL sample quantitation limit
SVOC semi-volatile organic compound

SVOC semi-volatile organic c TDS total dissolved solids TOC total organic carbon

TR Technical Report

TRPH	total recoverable petroleum hydrocarbons
TRV	Toxicity Reference Value
TSS	total suspended solids
U.S. EPA	United States Environmental Protection Agency
USGS	United States Geological Survey
UXO	unexploded ordnance
VOC	volatile organic compound

1.0 INTRODUCTION

1.1 BACKGROUND

The closure design of Ordot Dump, located on the island of Guam is currently being developed under a Consent Decree issued by the U.S. District Court of the Territory of Guam to the Guam Department of Public Works (DPW) (Civil Case No. 02-00022). In addition to the Consent Decree, Title 10, Chapter 51, Article 1 Solid Waste Management, §51101(4) of the Guam Code Annotated, mandates that the Ordot Dump be closed and converted to a public park.

This report presents a summary of existing environmental data for the Ordot Dump (Dump), identifies environmental data gaps, and presents general recommendations for further investigation. This report has been prepared as a component of the Environmental Baseline Survey (EBS) under Task 1 – Site Assessment for the Ordot Dump Closure. Other components of the EBS, including flora and fauna surveys, wetland determination and delineation, physical characterization, landfill fires, and landfill gas generation, are separately reported, and are not addressed specifically in this environmental data summary report.

As part of the closure process, an on-site and off-site Remedial Investigation (RI) (including chemical sampling and analysis) will be performed during Phase 2 of the Site Closure. The RI will be performed to support the completion of Human Health and Ecological Risk Assessments, the development of remedial action objectives, and a Feasibility Study (FS) for the site. The environmental data gaps identified in this report will be considered and provide a basis for the scoping of the RI for the Dump. The overall project goals of the RI/FS process are to provide the information necessary to characterize the site, define site dynamics, define risks, and develop a remedial program to mitigate current and potential threats to human health and the environment. Implementation of remediation efforts will be a part of the closure requirements. The detailed scope of work for remediation and post-closure care will be negotiated by DPW and the Guam Environmental Protection Agency (GEPA).

The evaluation of existing data presented in this report has been prepared in general accordance with the United States Environmental Protection Agency (U.S. EPA) guidance documents Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (U.S. EPA, 1988) and Conducting Remedial Investigations/Feasibility Studies for CERCLA Municipal Landfill Sites (U.S. EPA, 1991).

1.2 OBJECTIVES

The primary objective of this report is to summarize the existing environmental data for the site and to identify data gaps for additional physical and chemical environmental data needed to support closure design for the Dump, refine the conceptual site model (CSM) for contaminant fate and transport, and identify potential contaminants of concern for the development of the RI work plan for the site. Specific objectives include the following:

• Identify and compile existing environmental data, including chemical, geological, hydrological, and hydrogeological data;

- Assess the quality (accuracy, precision) of the existing chemical data and conformance with quality assurance/quality control (QA/QC) protocols under which they were collected, if possible;
- Evaluate data quality to determine the uncertainty associated with the current data and their usability;
- Develop a CSM to describe contaminant fate and transport, and exposure pathways;
- Perform a limited preliminary human health and ecological risk assessment based on existing data; and
- Identify physical and chemical environmental data gaps.

To accomplish these objectives, this report presents a summary of existing environmental data and their limitations, a CSM for contaminant transport and exposure pathways, and a data gap assessment. The environmental data gaps identified in this report will be considered during the development of the RI work plan, following review and acceptance of this report by GEPA.

2.0 SITE DESCRIPTION

2.1 LOCATION

Guam is located approximately 3,800 miles west of Hawaii and 1,500 miles south of Japan. Guam is the largest and southernmost island in the Marianas Archipelago. The island of Guam is approximately 212 square miles in area. Its main axis runs northeast-southwest, with a length of 30 miles and a width ranging between 4 and 11.5 miles.

The Ordot Dump is located approximately 2.5 miles south of Guam's capital, Hagatna, and about 1 mile southwest of the Dero Drive-Route 4 intersection (Figure 1). The Dump is an unlined disposal facility and has few to no control systems to manage landfill gas, leachate, surface water, erosion sedimentation, and vectors. The disposal area has been estimated to be approximately 46.8 acres, based on the limits of waste delineation performed in 2004.

The area surrounding the Dump is covered by dense brush and wooded areas and is developed with scattered residences. The nearest residences are approximately 200 feet from the Dump. The Dump is situated in a ravine that is a tributary to the Lonfit River, located to the south. The Dump occupies and borders property of the Government of Guam on the northeast, east, south, and southwest. The north and west limits of the Dump border public land in the form of a road and privately owned land, respectively.

2.2 HISTORY

The starting date for waste disposal at the Dump is not documented, but it is known that the Ordot Dump was in use before World War II (1939-1945). The Dump was used as a disposal area by the Japanese during the Japanese occupation of Guam from December 8, 1941 to July 21, 1944. Following the liberation of Guam, the U.S. Navy continued to use the site as a disposal area. Ownership of the Ordot Dump was transferred from the United States Naval Government of Guam to the Government of Guam in 1950 under the Organic Act. Since then, the Government of Guam, specifically DPW, has been operating Ordot Dump as a municipal solid waste disposal facility.

According to GEPA, the Ordot Dump has received not only municipal solid waste, but also hazardous waste. Anecdotal references to dumping of polychlorinated biphenyl (PCB)-containing wastes, pesticides, and military ordnance have been reported, however no documentation has been identified to confirm these practices.

Many fires have occurred at the Dump; however, a history of the fires has not been thoroughly documented. Since about 1990, it is generally accepted that there has been an average of at least one fire every one to two years. This includes a major tire fire that was essentially allowed to burn out in 1998. Subsurface (deep-seated) fires fueled by the generation of flammable (methane) and combustible gases during the decomposition of waste within the landfill have also been reported. With the exception of the tire fire of 1998, documentation of the type, size, location, and duration of the fires is mostly unavailable.

The following is a chronological summary of the operational and regulatory history for the Dump. This summary is adapted from the U.S. EPA (2002).

1940s	Dump used by Japanese and U.S. Naval military forces
November 1, 1950	Transfer of site from U.S. Navy to the Government of Guam
November 8-12, 1982	RI for Insular Territory Hazardous Waste Sites (draft report May 20, 1983)
September 8, 1983	Site placed on National Priorities List
March 26, 1986	U.S. EPA Clean Water Act (CWA) Notice of Violation (NOV) and Order to Guam DPW
November 18, 1987	Initial Site Characterization Report
September 1988	No Action Record of Decision (ROD)
July 24, 1990	U.S. EPA CWA Administrative Order to Guam DPW
September 30, 1993	First Five-year Review Report
December 1998	Superfund response to Ordot tire fire
August 7, 2002	Department of Justice (DOJ) files complaint against Guam for CWA violations
September 2002	Second Five-year Review Report
February 11, 2004	Consent Decree for closure of Ordot Dump
Present	Continued use as Guam's only municipal dump

3.0 SITE CHARACTERISTICS

3.1 GEOLOGY AND HYDROGEOLOGY

The Ordot Dump rests on the weathered surface of the Alutom formation, the oldest volcanically derived suite of rocks in Guam (Tracey et al., 1964). The Dump surface drains to the south to the Lonfit River. On the north side of the drainage divide, which crests at approximately 320 feet above mean sea level (MSL) and is located approximately 400 feet to the north, the ground slopes north toward the great limestone plateau of North Guam, in which the bulk of the groundwater resources of the island occur. However, the data thus far collected suggest that the site is not tributary to the limestone. If it was, several important municipal wells in Ordot would be threatened with pollution.

The Alutom formation consists dominantly of tuffaceous shale and sandstone, interbedded with basaltic and andesitic lava flows, as well as beds of volcanic conglomerate and breccia. All of these rocks were originally deposited beneath the sea, and consequently the tuff and its derivative sediments settled in compact layers, and the lavas were quenched. Both processes are unfavorable to the creation of a permeable rock mass. Subsequently, precipitation from hydrothermal fluids filled much of the pores, reducing permeability even further. The final result is a sequence of layered rocks with very low intrinsic permeability. The permeability that does exist is mostly due to secondary fractures.

The surficial deposits are composed of a few feet of soil and subsoil beneath which the parent volcanic rock is weathered to a depth of 10 to 30 feet. Below the saprolite of the weathered zone the rocks lie in their original, unweathered state. The strata are laterally discontinuous and a typical vertical sequence may contain pillow lavas, massive layered lava, fine tuff, coarse sand, conglomerate, and breccia. In most instances, none of the individual rock units exceed several feet in thickness; however, a few stratum may be tens of feet thick, particularly where the rock consists of tuff and tuffaceous shale. It is impossible to predict the sequence of strata in any region because of the great heterogeneity in rock types and their original environment of deposition.

The volcanic rocks are beneath a thin cover of alluvium below an elevation of 50 feet in the Lonfit River valley. Downstream of the confluence of the Lonfit and Sigua Rivers, the Pago River flows on alluvium, which is bounded on the north by limestone and on the south by volcanics.

The Alutom formation is a very poor medium for groundwater movement. The hydraulic conductivity is low, normally less than 0.1 feet/day (ft/day) (3.5E-5 centimeters/second [cm/sec]), and consequently the groundwater gradient is high, greater than 0.1. One of the earlier studies on the environment of the Dump (GTA, 1970) reported hydraulic conductivity values of 0.0386 ft/day (1.36E-5 cm/sec) and 0.4535 ft/day (1.60E-4 cm/sec) from samples taken at depth 10 to 15 feet in a borehole. These values are of the same magnitude as hydraulic conductivity values determined from pumping tests in deep wells completed in the Alutom formation in other areas of Guam (Barrett Consulting and CDM, 1982).

Due to the very low permeability of the volcanic rocks, groundwater accumulates and moves very slowly through them. In the typical volcanic terrain of Southern Guam, the groundwater flows toward stream valleys. Groundwater discharge takes place in the stream channels and a zone on the valley walls several tens of feet above a channel.

Subsurface regional geological conditions in the vicinity of the Ordot Dump are complicated by the presence of the Adelup-Pago fault, which divides Guam into two provinces, the northern one covered by limestone and the southern one consisting primarily of volcanics. The vertical displacement on the fault adjacent to the Dump is about 400 feet down to the north, which results in a downthrow of the original volcanic surface to approximately 200 feet below sea level on the north. Figure 2 is a cross-section that shows the relationships between the Dump, the Lonfit River, and North Guam separated by the fault. Figure 3 is a map showing the position of the volcanic basement beneath the northern limestone, which was determined from the seismic survey conducted during the Northern Guam Lens Study (Barrett Consulting and CDM, 1982). The contours express the elevation below sea level to the volcanic basement north of the fault. Just north of the Dump the limestone rests on the volcanics at 210 feet below sea level.

3.2 MONITORING WELLS AND BORINGS

A total of 19 borings were drilled in the volcanic substrate in the vicinity of the Ordot Dump between 1970 and 1993, and another two were drilled in the limestone to the east of the Dump in 1992. In addition, numerous excavations have been made, including the test pits recently completed by Dueñas & Associates, Inc. (D&A) to identify the limits of waste. Figure 4 shows the known locations of historical monitoring wells at and near the Dump. Available boring logs are included in Appendix A.

The first set of borings was drilled in 1970 as part of the Greenleaf/Telesca-Ahn (GTA) study. Of the eight borings, six were drilled in the ravine to the west of the then-existing Dump and two within the Dump footprint. The borings were shallow, ranging from 14 feet to 40 feet below the surface. The elevation of the bottom of the borings ranged from 122 to 210 feet MSL. Groundwater was not encountered in any of the borings. The lithologic logs and a boring location map are included in Appendix A.

The Water and Energy Research Institute (WERI) of the University of Guam had nine borings drilled and groundwater monitoring wells (well 1 through well 9) installed in 1989 (WERI, 1989). Eight were located between the toe of the Dump and the Lonfit River, and the other was located just beyond the northern edge of the Dump (Figure 4). Boring logs for these wells are not available, however based on the report, each of the WERI borings was deep enough to have encountered the water table in the volcanics. Several of the down-gradient wells may still exist but were not located during a well identification study by D&A in 2004. The up-gradient boring (Well 9, also identified as GW-4) is close to the Ordot Dump manager's office. Recently, Well 9 was located and found to be accessible for water table measurements.

In 1992, the USGS installed two deep monitoring wells east of the Dump, and perhaps a third, in the volcanics up-gradient of the Dump not far from Well 9. They are numbered OMW-1 and OMW-2 (Figure 4). The wells are at an approximate surface elevation of 270 feet MSL and

encountered the water table 10 to 20 feet below ground surface (bgs). Recent attempts to locate these wells have been unsuccessful. Boring logs are provided in Appendix A.

Two wells (MW-01 and MW-02) were drilled in the limestone terrain to the east of the Dump in 1992 by URS, for GEPA. Neither well penetrated to the volcanic basement. Well logs are included in Appendix A.

Table 1 summarizes available drilling information for all of the well borings.

3.3 SURFACE WATER

The average flow in the Lonfit River is 6.5 million gallons per day (mgd) from a drainage basin of 1,984 acres, an average of 3,250 gallons per day per acre (gpda). The flow data are for the entire period of record, 1951-1960, when the river was gaged by the USGS. In the dry season, flow decays to less than 100,000 gallons per day (gpd), and in severe droughts has reached zero. More recent flow data is not available.

Leachate from several seeps at the toe of the Dump drain into rivulets on the narrow alluvial terrace between the Dump and the Lonfit River and then into the River. Field estimates indicate the total visible leachate flow to be on the order of 10,000 to 20,000 gpd. This relatively small volume appears to be less than expected based on rainfall onto and through the exposed Dump surface; however, an approximate water budget indicates that seepage through the Dump is relatively small. The surface area of the Dump is about 47.1 acres and the average annual rainfall is 92 inches. Assuming that the rate of direct runoff per acre from the Dump area is the same as for the Lonfit River drainage basin, direct overland runoff amounts to 44 inches per year, leaving 48 inches for evaporation and infiltration. Average yearly pan evaporation in Guam is greater than 60 inches, but assigning just 30 inches as evaporation yields an infiltration rate of 18 inches per year. On 47.1 acres, 18 inches per year amounts to an average potential infiltration of about 63,000 gpd, some of which may be discharged at the toe of the Dump as leachate.

3.4 GROUNDWATER

Measurements of depth to water in the volcanics at Well 9 indicate a water table elevation of approximately 250 feet MSL. The ground level at this location is about 270 feet MSL and during Fall 2004, depth to water measurements of 23, 20, and 19 feet bgs were recorded. Assuming a mean elevation of the Lonfit River of 30 feet MSL as the surface of the water table, the decrease in head from Well 9 to the Lonfit River is 220 feet over a distance of 1,600 feet, giving an overall groundwater gradient, i, of 0.14. Although this is a very high gradient for groundwater, the grain size of the volcanic rock, combined with the low hydraulic conductivity of the Alutom formation (k = 0.1 ft/day), suggests a low Reynolds number (less than 10) and therefore possibly laminar (Darcian) flow in the volcanics. The velocity of the groundwater can be calculated by the equation:

v = k * i / n

where:

k = hydraulic conductivity (0.1 ft/day)

i = groundwater gradient (0.14 ft/ft)

n = effective porosity, assumed value of 0.10

Based on the assumptions described above, the velocity of groundwater is 0.14 ft/day, which is very small compared, for example, to the velocity of groundwater in the limestone of North Guam, which exceeds 10 ft/day.

Groundwater discharge into the Lonfit River from the area downgradient of the Dump can be estimated by the Darcy formula:

$$Q = k * z * i * 1$$

where:

 $Q = discharge (ft^3/day)$

k = hydraulic conductivity, estimated as 0.10 ft/day

z = approximate thickness of aquifer discharging to the Lonfit River, estimated as 200 feet (difference between the water table at Well 9 and the elevation of the Lonfit River channel)

i = groundwater gradient (0.14 ft/ft)

1 =width of the Dump (ft), along the river (1,200 ft)

The calculation suggests that total groundwater flow in the Alutom volcanics from the 1,200-foot-wide landfill to the north side of the Lonfit River is on the order of 25,000 gpd. Although this value is a poorly constrained estimate, it implies that the daily groundwater flow from the volcanics beneath the landfill to the river is small relative to the average flow in the river.

Because of the very low permeability of the volcanics, it is likely that leachate from the mass of refuse does not percolate very far below the volcanic rock surface. Conceptually, the principal leachate flow infiltrates vertically to the refuse or saprolite interface with the rock, then flows laterally along the interface between the saprolite and alluvium and the underlying volcanics (Figure 2). The topographic contour map of the region before emplacement of the landfill shows a shallow valley tributary to the Lonfit River where the refuse is now piled (Figure 3). It is likely that much of the leachate drains to this pre-existing valley floor and emerges as small streams at the landfill toe that flow on the narrow alluvial terrace to the Lonfit River. As the screened intervals for historical monitoring wells are unknown and there has been no attempt to assess whether there is preferential flow within discrete stratigraphic units within the volcanic rocks, the available groundwater data do not allow an evaluation of whether contaminants potentially

generated at the Dump are migrating solely through the near surface saprolite/alluvium or if there is migration via a deeper volcanic unit.

4.0 WASTE CHARACTERISTICS

4.1 WASTE CHARACTERISTICS

All non-hazardous municipal solid wastes generated on the island of Guam, excluding the wastes generated at the Naval and Air Force Installations, are currently accepted at the Dump for disposal. A study on the composition of Guam's waste was conducted by Rossi-Nayve Consultancy Services, Inc (JCTA, 1993). The majority of the waste received at the Dump consists of non-hazardous residential and commercial solid waste. The Dump also receives construction/demolition waste, bulky metal, and other related wastes. DPW does not accept hazardous wastes. DPW is permitted to receive wastewater treatment sludge with prior approval from the Guam Environmental Protection Agency (GEPA). According to Operations personnel, sludge is rarely received at the Dump.

Specific records of the types and quantities of materials placed in the Dump do not exist; however, since the implementation of the Resource Conservation and Recovery Act (RCRA) in the 1980s, the Dump has received primarily municipal waste. The Dump is therefore considered to contain a lesser amount of hazardous waste from pre-RCRA historical dumping. Types of municipal solid waste disposed of at the Dump likely include a heterogeneous mixture of materials composed primarily of household refuse (yard, food wastes, and paper) and commercial waste (plastics, inert mineral waste, glass, and paper).

U.S. EPA identifies four ways in which hazardous wastes may have become disposed at landfills (U.S. EPA, 1991):

- 1. Landfills (dumps) operated prior to the implementation of RCRA in November 1980 typically accepted and co-disposed both solid and liquid hazardous wastes.
- 2. Small quantity generators may contribute varying quantities of hazardous waste within the non-hazardous waste debris.
- 3. Some hazardous household waste (e.g., batteries and paint) may be disposed.
- 4. Biodegradation or landfill fires may create new components that are hazardous.

Given the history and current operations of the Dump, it is likely that all four of these mechanisms have contributed to the presence of hazardous materials at the Dump. Sampling and analysis of leachate samples from the Dump have been aimed at identifying hazardous constituents that are being released in the landfill leachate. Results for sampling and analysis of landfill leachate are presented in Section 5.

Constituents and properties that are typically present at elevated concentrations in leachate from domestic refuse include heavy metals, sulfates, chlorides, phosphates, sodium, hardness, chemical oxygen demand (COD), biological oxygen demand (BOD), Kjeldahl nitrogen, total organic carbon (TOC), total dissolved solids (TDS), and total suspended solids (TSS) (EPA 1991). Hazardous waste compounds generated by commercial, industrial, and agricultural activities that are typically found in municipal solid waste include heavy metals, volatile organic

compounds (VOCs), and pesticides (Sharma et al. 1994). Hazardous organic and inorganic constituents potentially associated with landfills are also identified in Appendix II to the solid waste regulations, 40 CFR 258, and include metals, VOCs, semi-volatile organic compounds (SVOCs), pesticides, PCBs, cyanide, and others. Based on the above information, the following hazardous constituents are reasonably expected to be contaminants of potential concern (COPCs) at the Dump:

- Heavy metals;
- Cyanide;
- VOCs;
- SVOCs;
- · Pesticides; and
- PCBs.

In addition to the hazardous constituents listed above, it is widely known that significant quantities of unexploded ordnance (UXO) were placed in the Dump, especially during World War II, by both the Japanese and the U.S. forces on Guam. Many anecdotal accounts of this ordnance exploding, sometimes causing fires, have been related. However, there is no particular record of any serious damage or injuries as a result. Generally speaking, the location of any remaining UXO is unknown; however it is known that the operating area at that time was more or less confined to the northwest corner of the existing footprint, adjacent to Dero Drive. Chemicals potentially associated with World War II-era explosives include nitroaromatics and nitramines. These chemicals are also considered to be COPCs.

Pyrolytic oil and dioxins/furans are hazardous materials generated or mobilized during tire or landfill fires. Pyrolytic oil is a free-flowing, oily tar that is generated by the breakdown of tires during the high temperatures and oxygen-deprived atmospheres occurring during tire fires. Hazardous constituents potentially associated with pyrolytic oil include heavy metals, polynuclear aromatic hydrocarbons (PAHs) and other hydrocarbons, and dioxins/furans. Dioxins/furans are persistent, highly toxic chlorinated organic compounds that may be formed during combustion of material that includes organic carbon and chlorine. Dioxins/furans may be generated during both landfill fires and tire fires. Multiple fires, including at least one tire fire, have occurred at the Dump. Dioxins/furans and hazardous constituents associated with pyrolytic oil are also considered to be COPCs.

4.2 WASTE QUANTITIES

Records of waste quantities received at the Dump do not exist for the majority of the period of operation. Information on the exact filling rates are not available; however, it is estimated that approximately 200 tons per day (for approximately 300 days per year) of refuse entered the landfill from 1950 to 1990, followed by 350 tons per day (for approximately 300 days per year) from 1990 to present. The Dump is scheduled to continue receiving waste through closure in

2007. The annual incoming waste tonnage at Ordot Dump between 2005 and 2007 is estimated to be approximately 120,000 tons (D&A, 2004).

5.0 SUMMARY OF EXISTING ENVIRONMENTAL DATA

Studies aimed at evaluating the impacts of the Dump on the Lonfit and Pago Rivers have been conducted since the 1970s. This section presents a summary of the existing chemical characteristic data for the site. The objective of this review is to provide a synopsis of the available data and conclusions that can be drawn from the results. The synopsis of available data will be incorporated into the CSM and serve as the basis for the development of the environmental data gap assessment (Section 7.0).

The summary consists of a desktop review of available environmental data, including an assessment of the data representativeness and usability. Data usability will address the appropriateness of the data for regulatory comparison and the use of the data for developing a CSM and/or RI work plan. The set of available reports reviewed during the preparation of this report are described in Section 5.1. Section 5.2 describes those reports or datasets that are known or suspected to exist, but were not available for review during the preparation of this report. A summary of the existing analytical data is presented in Section 5.3, and data limitations are discussed in Section 5.4.

5.1 EXISTING REPORTS REVIEWED

During the development of this summary report, the project team identified, obtained, and reviewed copies of readily available reports that contain chemical characteristic information for the site. The following reports were available for review by the project team:

- RI, Insular Territory Hazardous Waste Sites, Draft Report. Prepared by Black and Veatch (B&V) for U.S. EPA. May 20, 1983.
- Draft Initial Site Characterization Report, Ordot Landfill, Island of Guam. Prepared for U.S. EPA by Camp, Dresser, & McKee, Inc. (CDM). October 7, 1987.
- Agency Review Draft, Risk Assessment, Ordot Landfill Site, Guam. July 8, 1988.
 Prepared by CH2M Hill/B&V.
- WERI of the Western Pacific, University of Guam. Technical Report (TR) 72: The Occurrence of Certain Pesticides in Ground and Surface Waters Associated with Ordot Landfill in the Pago River Basin, Guam, Mariana Islands. November 1989.
- FS for the Expansion of Ordot Sanitary Landfill, Municipality of Pago-Ordot, Territory of Guam, Volume II. Juan C. Tenorio & Associates, Inc. September 1993.
- Surface Water Sampling Report for March 1998, Ordot Landfill, Ordot, Guam. Prepared for DPW, Government of Guam by Unitek Environmental-Guam. April 10, 1998.
- Surface Water Sampling Report for July 1998, Ordot Landfill, Ordot, Guam. Prepared for DPW, Government of Guam by Unitek Environmental-Guam. August 20, 1998.

- Surface Water Sampling Report for August 1998, Ordot Landfill, Ordot, Guam. Prepared for DPW, Government of Guam by Unitek Environmental-Guam. September 8, 1998.
- Surface Water Sampling Report for November 1998, Ordot Landfill, Ordot, Guam.
 Prepared for DPW, Government of Guam by Unitek Environmental-Guam. December 21, 1998.
- Letter to Mr. Jesse Cruz, GEPA from Unitek Environmental-Guam re: Ordot Sampling. February 24, 1999.
- Five-year Review Report, Second Five-year Review, Ordot Landfill Site, Territory of Guam. U.S. EPA Region 9. September 2002.
- USGS Project Synopsis Report June 2003. Title: Impact of Ordot Dump on Water Quality of Lonfit River Basin in Central Guam. Principal Investigators: G.R.W. Denton, M. Golabi, and H.R. Wood.
- Data Tables provided to D&A by GEPA. 2004. Surface water data 1974-1977 and 1997-1998.

Table 2 presents a summary of the sampling and chemical analyses described in these reports, including sample matrices (surface water, leachate, groundwater, sediment), sampling dates, sampling locations, sampling methods, chemical analyses, and available QA information (field and laboratory).

5.2 OTHER REPORTS

The following reports were not available for review by the project team during the preparation of this summary report. These reports were either specifically referenced or referred to in the reports listed in Section 5.1 and may include sampling and/or analytical information relating to the chemical characterization of the Ordot Dump. Data from several of these reports are included in the analytical results tables included in Appendix B.

- Revised Work Plan for Ordot Landfill, Guam. Prepared by CDM. November 20, 1985.
- Surface water sampling reports for November 1997, December 1997, January 1998, February 1998, April 1998, May 1998, June 1998, September 1998, and October 1998, Ordot Landfill, Ordot, Guam. Unitek Environmental-Guam. Dates unknown.
- Water quality results for Pago River water year 1981. United States Geological Survey (USGS). Date Unknown.
- Monitoring well installation and sampling field forms. URS Consultants. October 29, 1992.
- Leachate and surface water sampling results for USGS funded study, 1986 to 1987.
 WERI of the Western Pacific, University of Guam. No date.

• Leachate and surface water sampling results from trace metals sampling program, 1990 to 1994. WERI of the Western Pacific, University of Guam. No date.

With the exception of the 1997-1998 Unitek monthly surface water sampling reports, the sampling and analyses described in these unavailable reports occurred over ten years ago. As such, these historical data would be of little to no use for describing current site conditions and these missing reports are considered to be of relatively low value and significance. The missing 1997-1998 Unitek monthly surface water monitoring reports are only a subset of the available reports for this monthly monitoring program, and in several cases the analytical results from the missing Unitek reports were included in the analytical summary table from the Second Five-year Review (U.S. EPA Region 9, 2002). These data are summarized in Appendix B. Analytical data from the missing reports could potentially help to improve the CSM or further refine the list of potential constituents of concern identified by this report; however, the absence of these data do not prevent the identification of data gaps that should be addressed during subsequent investigations at the Dump.

5.3 EXISTING ENVIRONMENTAL DATA

The available analytical data were compiled from investigations spanning more than two decades. The available data vary by medium, and the amount of information ranges from relatively extensive (for surface water and leachate) to non-existent (for soil and biota). Several of the reviewed reports do not describe the specific quality assurance/quality control (QA/QC) measures included with the sampling and analysis, and laboratory analytical reports were not included with several of the reports (Table 2). Nevertheless, the available analytical data for the Dump do provide some potentially useful information regarding the likely chemicals of concern associated with leachate from the Dump and the potential effects of the Dump on groundwater, surface water, and sediment at and adjacent to the site.

During the preparation of the Second Five-year Review Report (U.S. EPA Region 9, 2002), EPA's consultant compiled and tabulated analytical results for surface water/leachate, groundwater, and sediment. These summary tables (Tables 1, 2, and 3 from the Second Five-year Review Report) have been included as Appendix B of this summary report. Environmental data identified during this review, which were not included on the Second Five-year Review Report tables, have been included as supplemental Table 1a (surface water/leachate) and Table 3a (sediment) in Appendix B. Analytical results from the June 2003 USGS Project Synopsis Report Impact of Ordot Dump on Water Quality of Lonfit River Basin in Central Guam are not included in the Appendix B data tables. This report is included in its entirety as Appendix C.

The existing environmental data for leachate, groundwater, surface water, and sediment are described in the following subsections. The usability of analytical data for regulatory comparison is discussed by comparing the analytical results to screening levels, when available. Screening levels for leachate, groundwater, surface water, and sediment were derived from Guam Water Quality Standards (GWQS) (GEPA, 2002) and U.S. EPA Region 9 Preliminary Remediation Goals (PRGs)(U.S. EPA, 2004) as follow:

- Leachate, surface water GWQS (category S-1);
- Sediment PRGs (residential soil PRG or soil screening level for migration to groundwater); and
- Groundwater GWQS (category G-2) or PRGs (where GWQS do not have a standard).

When multiple values were available in the referenced sources, the lowest value was conservatively used for comparison with analytical results.

5.3.1 Leachate

Leachate samples have been collected at different times from four leachate sampling locations (SW-5, SW-7, SW-9, and SW-10) identified on Figure 5. Existing leachate analytical results for seeps SW-5 (south leachate stream), SW-7 (leachate pond), SW-9 (southeast leachate stream), and SW-10 (west leachate stream) are tabulated in Appendix B, Tables 1 and 1a. A summary of leachate analytical data, including the number and range of available analytical results and associated screening levels, is provided in Table 3.

A description of the location and frequency of sampling for each location is summarized below:

- SW-5 Leachate sampling location SW-5 is located in a tributary stream to the Lonfit River that includes leachate discharging from the eastern portion of the southern face of the Dump. Based on the USGS topographic map of the site prior to use as a dump (GTA, 1970), the stream tributary SW-5 appears to be aligned with a natural drainage which has been covered by the dump. Intermittent analytical data for leachate sampling location SW-5 are available for the period 1981 to 1999.
- SW-7 Leachate sampling location SW-7 is described as a leachate pond located along the southern toe of the Dump. The pond was likely formed by the pooling of leachate in a depression on the downgradient slope of the Dump. Water samples were collected from leachate sampling location SW-7 in 1982 (B&V, 1983) and 1987 (CDM, 1987). The leachate pond described as SW-7 was not observed during site reconnaissance performed in October 2004 as part of the closure design and is believed to have been covered by filling activities that have occurred since 1987.
- SW-9 Leachate sampling location SW-9, also referred to as GEPA sampling station LFL-3, has been described as a stream originating from the northern edge of the Dump (B&V, 1983) and as a leachate stream to the southeast of the Dump (U.S. EPA Region 9, 2002). Leachate sampling location SW-9 has not been sampled since the early 1980s.
- SW-10 Leachate sampling location SW-10 is located in a tributary stream, which flows along the western edge of the Dump to the Lonfit River southwest of the Dump. This stream includes leachate that discharges from the western portion of the Dump, along with surface water runoff from areas north and northwest of the site. The confluence of this tributary stream with the Lonfit River is at location SW-0 (Figure 2). Intermittent

analytical data for leachate sampling location SW-10 are available for the period 1982 to 1999.

Leachate samples from the above locations were analyzed for metals (1981-1998), VOCs (1982 and 1987), semi-volatile organic compounds (SVOCs) (1982 and 1987), pesticides (1982, 1989 and 1998), PCBs (1982 and 1998), total recoverable petroleum hydrocarbons (TRPH) (1998), and/or conventionals (1980 – 1998).

The study conducted by USGS in 2002/2003 included the collection of leachate samples from two locations for a one-time analysis of all priority pollutants listed under GWQS (GEPA, 2002). A figure showing the leachate sampling locations was not included in the USGS report.

VOCs and SVOCs were either not detected or detected at only trace levels in leachate samples collected during the 1982 and 1987 studies at the Dump. In most cases, constituents with low-level detection in leachate samples were also detected in the associated laboratory (method) blanks. VOCs and SVOCs were not detected at concentrations exceeding applicable GWQS. With the exception of bis(2-ethylhexyl) phthalate, the reporting limits provided by the data reports were below available GWQS. However, the lists of analytes reported from the VOC and SVOC analyses for the 1982 and 1987 studies appear limited and do not contain many common VOCs and SVOCs for which GWQS are established.

The focused 1989 study to evaluate pesticide occurrence did not detect pesticides in leachate samples collected at SW-10 (WERI, 1989), however for the pesticides with corresponding GWQS the reporting limits were well above the GWQS criteria. Two pesticides (dieldrin and endosulfan sulfate) were detected in the field duplicate sample collected from leachate stream SW-9 during the 1982 RI, however these pesticides were not detected in the primary field sample. Pesticides were not detected in other leachate samples collected during the 1982 RI, however the reporting limits were well above established GWQS surface water criteria. Monthly monitoring performed by Unitek for DPW did not detect DDT or PCBs in leachate streams at SW-5 and SW-10, and the discontinuation of PCB/DDT analysis was approved by GEPA following seven months of consecutive non-detects for these analytes (Unitek, 1998b). The reporting limits for DDT and PCB results from the monthly monitoring program were well above GWQS surface water criteria.

For the 2003 USGS study, organic constituents were not detected above GWQS. Organic constituents detected at concentrations below GWQS or for which water quality standards have not been established include pesticides (p-dichlorobenzene), organic solvents (acetone, benzene, ethylbenzene, tetrahydrofuran, toluene, cis-1,2-dichloroethene, m,p-xylenes, and o-xylene), and phenolic compounds. PCBs, polynuclear aromatic hydrocarbons (PAHs), dioxins and furans were not detected during the 2003 USGS study.

Inorganic and conventional constituents detected at concentrations exceeding GWQS surface water criteria during studies performed 1980 - 1998 include aluminum (SW-5, -7, and -9), (SW-5, -7, -9, and -10), cadmium (SW-5), copper (SW-5, -7, -9, and -10), lead (SW-5, -7, and -9), mercury (SW-5, -7, -9, and -10), selenium (SW-5), silver (SW-5), zinc (SW-7), ammonia (SW-5 and -10), cyanide (SW-10), nitrate (SW-5 and -10), and phosphorus (SW-5 and -10). The measured pH in leachate samples from streams SW-5 and SW-10 were below the GWQS surface

water criteria of 6.5 – 9 during the 1987 (SW-5 and –10) and 1997 (SW-5) sampling events. Results from the USGS 2003 study indicated total coliforms, indicator bacteria (*E. coli, Enterrococci*), nitrite/nitrate, ammonia, orthophosphate, cyanide, and metals (aluminum, antimony, arsenic, chromium, copper, iron, lead, manganese, nickel, and zinc) above GWQS for surface water and/or drinking water. The reporting limits for the historical inorganic and conventional data set were generally acceptable for comparison with GWQS. GWQS surface water criteria are not established for manganese; however, manganese has been detected in leachate samples at concentrations generally an order of magnitude greater than concentrations detected in the Lonfit River. A summary of leachate sample analytical results for inorganic constituents is presented in Table 3.

Available leachate analytical data indicate that the Dump may be contributing to elevated concentrations of total coliforms, indicator bacteria (*E. coli, Enterrococci*), nutrients, cyanide, metals, phenolic compounds, a pesticide (p-dichlorobenzene), and selected organic solvents in the leachate.

5.3.2 Groundwater

Seven groundwater monitoring wells have been sampled at different times to investigate conditions on or adjacent to the Dump (Figure 4). Two production wells (Municipal Wells A-11 and A-12), northeast of the site and the fault which acts as a hydrologic barrier (Figure 3) have also been sampled. Groundwater analytical data are available for these monitoring and production wells from sampling events performed in 1982 (B&V, 1983), 1987 (CDM, 1987), and 1989 (WERI, 1989). Groundwater samples were analyzed for metals (1982 and 1987), VOCs (1982 and 1987), SVOCs (1982 and 1987), pH (1982 and 1987), cyanide (1987), pesticides (1989), and PCBs (1982). Available groundwater analytical results are summarized in Table 4 and tabulated in Appendix B, Table 2. Several of the wells can not be located or have been damaged. Table 1 indicates which monitoring wells have been successfully located in the field during recent (2004) work at the Dump.

Organic constituents, including VOCs, SVOCs, pesticides and PCBs have either not been detected or detected at only trace levels below GWQS or PRGs in groundwater samples collected from near the Dump. The majority of the detections of organics in groundwater have also been considered suspicious due to concurrent detections in the associated field or laboratory blank(s). Bis(2-ethylhexyl)phthalate was detected at a concentration exceeding the PRG in a sample collected from Well 9 in 1987. Reporting limits provided for VOCs, SVOCs, pesticide, and PCB analyses were generally acceptable for comparison with GWQS or PRGs; however, the lists of analytes reported from the VOC or SVOC analyses appear limited and do not include many common VOCs and SVOCs for which GWQS are established.

Based on the available data, aluminum, iron, and manganese were the only metals detected at concentrations that exceed GWQS or PRGs in monitoring wells associated with the Dump. Mercury was detected one time only at a concentration exceeding the primary GWQS in municipal well A-11. This well is completed in the limestone of the Northern Guam Lens (NGL) aquifer. Mercury has not been detected in groundwater samples collected from monitoring wells associated with the Dump. With the exception of antimony and thallium, the

reporting limits provided in the historical analytical data summaries were acceptable for comparison with groundwater screening levels.

The USGS collected subsurface water samples using suction cup lysimeters from five sites around the western edge and southern toe of the dump as part of their 2002/2003 investigation (USGS, 2003). Subsurface water samples were collected from the buried lysimeters at depths of 2 feet, 4 feet, and 6 feet below ground level and analyzed for total metals, bacteria, and nutrients. A figure showing the subsurface water sampling locations was not included in the synopsis report. The USGS 2003 report indicates "little or no subsurface movement of bacterial pathogens from the dump into the watershed." The study also observed nitrate/nitrite enrichment in the majority of samples from the shallower depths and occasionally at the deepest level. Ammonia and orthophosphate levels were generally low and indicative of a fairly well aerated soil environment at all depths. Samples were also analyzed for heavy metals; however, analytical results were not available at the time of the USGS report preparation and have not been provided in any subsequent report made available to the project team to date.

The available groundwater data for sampling locations located downgradient of the Dump indicate that it may be contributing to elevated metals and nutrient concentrations in groundwater.

5.3.3 Surface Water

Three surface water stations have been sampled on the Lonfit River in the vicinity of the Dump: SW-1 (upstream of the Dump), SW-0 (at the confluence of the leachate seep SW-10 with the River), and SW-2 (downstream of the Dump). The locations of the three sampling stations are shown on Figure 5. Surface water samples were analyzed for metals (1981-1998), VOCs (1982 and 1987), SVOCs (1982 and 1987), pesticides (1982, 1989 and 1998), PCBs (1982 and 1998), TRPH (1998), and/or conventionals (1980 – 1998). Analytical results for surface water sampling performed between 1980 and 1999 are presented in Appendix B Tables 1 and 1a. Table 3 presents a summary of the number of analytical results, minimum and maximum detected concentrations, and associated screening levels. Lonfit River water quality data provided by GEPA for 1974 to 1977 were not included in the summary tables because these water quality data did not include COPCs (Section 4.1) and more recent data were available.

The USGS collected surface water samples at monthly intervals from five locations in the Lonfit River and Pago River during their 2002/2003 investigation (USGS, 2003). A figure showing the surface water sampling locations was not included in the synopsis report, however the sampling locations were identified as 10 feet, 500 feet, 1,000 feet, 4,500 feet and 5,000 feet from the discharge point of an unidentified leachate seep's confluence with the Lonfit River. The synopsis report does not discuss a surface water sampling location in the Lonfit River upstream of the leachate discharge point. Surface water samples collected during the 2003 study were analyzed for bacteria, dissolved metals, and nutrients.

VOCs and SVOCs were either not detected or detected at only trace levels in surface water samples collected during the 1982 and 1987 studies at the Dump. In most cases, constituents with low-level detections in samples were also detected in the associated laboratory (method) blanks. VOCs and SVOCs were not detected at concentrations exceeding applicable GWQS.

With the exception of bis(2-ethylhexyl) phthalate, the reporting limits provided by the data reports were below GWQS. As described above for leachate, the lists of analytes reported for VOC and SVOC analyses do not contain multiple common VOCs and SVOCs. Pesticides and PCBs have not been detected in surface water samples, however the reporting limits for most of these constituents exceed GWQS criteria.

For the metals and conventionals that were detected, only cadmium, copper, lead, mercury, selenium, silver, ammonia, and nitrate were detected at concentrations exceeding QWQS. The USGS 2003 report indicated that fecal coliform and indicator bacteria, inorganic nitrogen, and heavy metal enrichment were observed at the station nearest to the landfill, and that concentrations of metals attenuated downstream either through dilution or partitioning to sediment. Inorganic nitrogen and fecal coliform/indicator bacteria concentrations at the sampling locations further downstream from the dump were noted as suspected to be influenced by discharges to the river of wastewater not associated with the Dump.

The available analytical data for samples collected from the Lonfit River upstream and downstream of the Dump indicate that it may be contributing to increased metals, nutrients, COD, fecal coliform, and indicator bacteria concentrations in the Lonfit River.

5.3.4 Sediment

Sediment sampling and analysis was performed one time in 1982 as part of the Insular Territories Hazardous Waste Sites RI (B&V, 1983). Sediment samples were collected at two locations in the Lonfit River (upstream at SS-1 and downstream at SS-11) and from four leachate streams (SS-3, SS-5, SS-7, and SS-9) (Figure 5). Sediment samples were analyzed for selected metals, VOCs, SVOCs, and pesticides. Analytical results for sediment samples are summarized in Table 5 and tabulated in Appendix B Tables 3 and 3a.

Organic compounds detected in sediment samples include phthalates (bis[2-ethylhexyl]phthalate and butyl benzyl phthalate), PAHs (fluoranthene, pyrene, and aniline) VOCs (methylene chloride and fluorotrichloromethane) and a pesticide (dieldrin). Methylene chloride was detected in all sediment samples at concentrations exceeding the PRG; however, the VOC detections in samples were similar to the detected concentrations in the associated trip blanks. Detections of PAHs were not confirmed by the associated field duplicate samples collected at each location. Similarly, phthalate detections were not confirmed by field duplicates except for the sediment sample collected at location SS-9, located near leachate seep SW-9 on the east side of the dump (Figure 5). The only pesticide detection was also associated with the sediment sample from location SS-9, where dieldrin was detected at a concentration exceeding the PRG. The reporting limits provided for organic analyses were generally acceptable for comparison with PRGs.

The metals antimony, arsenic, barium, chromium, iron, manganese, and nickel were detected in sediment samples at concentrations that exceed PRGs for residential soil or soil screening levels for protection of groundwater (U.S. EPA Region 9, 2004). Detections of antimony, iron, and manganese that exceeded PRGs were associated with sediment samples collected from leachate streams. For the metals detected in Lonfit River sediment samples at concentrations exceeding PRGs (arsenic, barium, chromium, nickel), samples collected from both upstream and downstream of the Dump exceeded PRGs. With the exception of antimony, selenium, silver, and

thallium, the reporting limits provided in the historical reports were acceptable for comparison to PRGs.

The available analytical data for sediment samples collected upstream and downstream of the Dump indicate that the Dump may be contributing to increases in metals (aluminum and iron) concentrations in sediment in the Lonfit River.

5.4 LIMITATIONS OF AVAILABLE ANALYTICAL DATA

While the existing environmental data for the Dump do assist with identifying potential chemicals of concern associated with the various media, there are recognized limitations to the use of the existing data for site characterization. The following is a list of some substantial limitations of existing data with respect to characterizing contamination at the site:

- Many of the data are relatively old (greater than ten years) and consequently these data are not likely to be representative of current site conditions.
- The lists of analytes reported for VOC and SVOC analyses appear to be limited and do
 not contain some common constituents. For example, data sets for VOC analyses do not
 include results for vinyl chloride, a common VOC that is frequently of environmental
 concern.
- In many cases the reporting limits provided for the historical chemical analyses are greater than the screening levels and therefore not useful for comparison to screening criteria (e.g., GWQS, PRGs).
- Reports reviewed do not include complete laboratory analytical reports; therefore, sufficient information is not available to perform data quality reviews or data validation.

Statistical comparisons of analytical data to screening levels (i.e., evaluating the confidence interval for non-exceedance of GWQS) were not performed due to the limitations of the data described above.

6.0 CONCEPTUAL SITE MODEL AND EXPOSURE PATHWAYS

The development of a preliminary conceptual site model (CSM) for contaminant fate and transport is the first step in assessing exposure pathways. The preliminary CSM was developed, based on the current understanding of site dynamics and the available environmental data for the Dump. Section 6.1 presents the preliminary CSM for the Dump. Descriptions of potential exposure pathways and human and ecological populations are discussed in Section 6.2. As additional data is collected through the RI process, detailed CSMs for both human and ecological exposures will be generated.

6.1 CONCEPTUAL SITE MODEL

A CSM describes the sources of chemicals at a site, their release and transfer through environmental media (e.g., soil, water, and air), and the points and means by which human and ecological populations might contact the chemicals. The goal of the CSM is to provide an understanding of what physical, chemical, and biological processes are affecting the nature and distribution of chemicals of concern. It also addresses where these chemicals may be present in the future, so that the populations that could encounter the chemicals can be identified and protective remedial alternatives can be developed. The preliminary CSM for the Dump, showing the movement of contamination throughout the site (the "fate and transport" of the landfill-generated chemicals) is presented in Figure 6. The CSM was developed based on the current understanding of the physical characteristics of the site, as described in Section 3, and the chemical characteristics of environmental media at or near the site, as described in Section 5.

Hazardous chemicals, which were either disposed of or generated at the Dump through biodegradation of waste or landfill fires are released either to the air (as dust or gases) or to the ground surface or subsurface (as leachate or contaminated surface runoff). Leachate is generated by the percolation of precipitation or liquids disposed at the Dump, through the waste in the Dump. Because of the very low permeability of the underlying volcanic rocks, it is likely that leachate from the mass of waste does not percolate very far below the volcanic rock surface, if at The currently available data suggests that leachate infiltrates to the rock surface and primarily flows along the interface between the waste and/or saprolite and the volcanics. It appears that much of the leachate preferentially drains to valleys that existed prior to filling at the Dump (paleo-valleys) and emerges as small streams that flow onto the narrow alluvial terrace along the Lonfit River, from where it seeps into wetlands or the river. Leachate from the Dump is discharged either to subsurface soils and groundwater or to surface water and wetlands as leachate seeps. Surface water-groundwater interactions, occurring either as infiltration of surface water to groundwater or the discharge of groundwater to surface water or wetlands, may complicate the transport pathways of leachate and contaminated surface runoff from the Dump. In addition, there is insufficient subsurface stratigraphic and groundwater data to assess whether there has been significant leachate infiltration into the volcanic rock and lateral flow within discrete stratigraphic units within the volcanics.

Hazardous chemicals may also be generated or mobilized by landfill fires or tires fires occurring at the Dump (dump fires). Dump fires release chemicals to the air as vapors, smoke, and dust,

and may also generate or mobilize chemicals to the surface and subsurface as pyroltic oil and ash. Pyrolytic oil released during dump fires may migrate within the Dump and become commingled with leachate.

6.2 EXPOSURE PATHWAYS

After the preliminary CSM is developed, potential exposure pathways may be identified. An exposure pathway is the mechanism by which a receptor (human or ecological) is exposed to hazardous chemicals from a source (i.e., the Dump). The following four elements constitute a complete exposure pathway:

- a source and mechanism of chemical release;
- a retention or transport medium (e.g., soil);
- a point of potential receptor contact with the affected medium; and
- a means of entry into the body (e.g., ingestion) at the contact point.

Only complete pathways containing all four elements result in exposures and require data collected from the site. Several possible pathways of exposure may exist at the Dump. For the purposes of this report, likely pathways of exposure have been identified to assist with identifying data gaps that will need to be filled in order to assess health risks from the particular pathways. The following subsections describe potential human health and ecological exposure pathways.

6.2.1 Human Health Exposure

Human exposures are dependent on the human land uses in the immediate vicinity of the Dump. The Dump is located in a rural agricultural area with scattered residences. The nearest residences are approximately 200 feet and in a presumed hydrologically upgradient location from the Dump. However, during the landfill fires in 2002, multiple families were considered close enough to the threat that they were required to evacuate their residences (U.S. EPA Region 9, 2002). In addition to nearby residences, Agueda Johnston Middle School is located less than one mile northeast of the Dump.

The closure design for the Dump includes the placement of a cap and the installation of leachate and landfill gas collection and treatment systems. The Guam Code Annotated regulations require that the Dump be converted to a public park after closure. As the Dump is in the process of closure, the exposure pathways and potential human receptors for hazardous constituents associated with the Dump will be different in the future from what they are now. As part of the RI/FS process US EPA requires that baseline risk assessments be conducted assuming no remedial actions occur and risks are evaluated for both current and future conditions. However, for municipal landfills where there is a "presumed remedy", US EPA guidance recommends a streamlined or limited baseline risk assessment (US EPA 1992b). Because containment of the landfill's contents is known to be the response action, the risk assessment is of most use in identifying areas outside the landfill that might need to be addressed in order to protect human

and environmental health. In other words, there is no need to conduct a full baseline risk assessment assuming no remedial measures. For human health this means that the following exposure pathways that could be occurring in the present will not be considered in the risk assessment:

- Direct contact with soil and/or debris that will be covered by the landfill cap;
- Exposure to contaminated groundwater within the landfill prevented by groundwater controls;
- Exposure to contaminated leachate prevented by leachate collection and treatment; and
- Exposure to landfill gas addressed by a gas collection and/or treatment system.

We note that construction workers (adult only population) involved in capping and redevelopment of the site could be exposed to the Dump's soil and debris through incidental ingestion, inhalation, and dermal contact with chemicals in subsurface and surface soil and through inhalation of gases, vapors, or dusts. However, the exposure hazards of this short-term exposure would be addressed through worker protection regulations (e.g., OSHA), and would be prevented through the requirements and controls established in the job-specific health and safety plan. The risk assessment will address construction workers qualitatively and no data need be collected to quantify health risks to this population.

After closure activities effectively remove the exposure pathways identified above, the remaining media of concern for potential human health exposure will include impacted soil and groundwater outside the boundaries of the closure cap, surface water, and sediment. The Lonfit River is located downgradient and south of the Dump (Figure 1). The river and small streams of leachate between the Dump toe and the River are surface waters potentially affected by the Dump. The types of human populations that could be exposed to chemicals of concern in each of the above media are listed below along with potential exposure pathway(s):

- Current trespassers (population includes school-aged children) walking over impacted surface soil outside of the landfill cap could be exposed through incidental ingestion of and dermal contact with chemicals in surface soil.
- Current trespassers (population includes school-aged children) walking over impacted surface soil outside the footprint of the landfill cap could be exposed through inhalation of vapors and dusts generated from surface soil.
- Current residents (adults and children) inhaling vapors emitted from groundwater outside
 the landfill and intruding into buildings. If there is no impacted groundwater beneath
 existing buildings, then this pathway is incomplete and does not require evaluation unless
 there is a chance that a future building would be constructed above impacted
 groundwater.

- Future residents (adults and children) who use potentially impacted groundwater outside the landfill for domestic purposes, including drinking the water, inhaling vapors, and absorption through the skin could be exposed to chemicals in groundwater.
- Current/future recreational populations (adults and children) who are exposed to chemicals in surface water, soil, and sediment via incidental ingestion, inhalation, and dermal contact during recreational activities.
- Nearby residents (adults and children) consuming fish caught in the Lonfit River.

6.2.2 Ecological Exposure

For ecological risk assessments, the species that are to be evaluated must be selected in the initial stages of the risk assessment. Ecological risk assessments must address both terrestrial and aquatic receptors. Specific ecological receptors that have been observed or are expected to occur near the Ordot Dump were evaluated as part of the EBS for the Dump closure; however additional potential receptors may be identified during the work plan stage. Selection criteria for identifying representative species for evaluation in the risk assessment include the following:

- species has special status (threatened or endangered);
- species has a small home range;
- species is from a high trophic level (e.g., predators) that might be susceptible to bioaccumulation or biomagnification;
- species is ecologically important; and
- species is valuable locally as a food source or economic resource.

While the species that will be evaluated have yet to be selected, the media of concern are known to be soil, sediment, and surface water. Ecological receptors would not be exposed to groundwater. Selection of species for evaluation will be completed after the completion of the EBS during the development of the RI work plan

7.0 DATA GAP ASSESSMENT AND RECOMMENDATIONS

This section identifies environmental data gaps related to the completion of an RI and associated Human Health and Ecological Risk Assessments for the Dump. General recommendations to address the data gaps are described. Specific sampling locations or numbers of samples are not identified in the data gap and recommendations discussions. Sample locations, analytical methods, and appropriate field and laboratory QA/QC procedures will be identified during the development of the RI work plan(s).

General data needs for completing risk assessments and sample types and locations by exposure pathway are described in Section 7.1. Environmental data gaps for leachate, soil, groundwater, surface water, sediment, and biota are presented in Section 7.2 and sample quantitation requirements are discussed in Section 7.3.

7.1 DATA NEEDS FOR RISK ASSESSMENT

Risk assessments require adequate data as the basis for the assessments of health risks. While human health and ecological risk assessments have differing approaches and methodology, appropriate to the different populations evaluated, the initial step of both types of risk assessments is a data evaluation. Data must be of sufficient quantity and quality so health risks can be adequately estimated from the data and the best decisions regarding site cleanup/redevelopment can be made. EPA's data usability guidance (U.S. EPA, 1992a) identifies four data application questions requiring an answer for risk assessments. The 1992 guidance is focused on human health; however the data application questions are appropriate for both human and ecological risk assessments. The data application questions are as follow:

- 1. What contamination is present, and at what levels? This question applies to the selection of analytical procedures and detection limits. The analytical methods identified for the RI should be selected to capture all potential contaminants at the site. The sample quantitation limits (SQLs) requirements for risk assessments are discussed in Section 7.3.
- 2. Are site concentrations different from background? Concentrations of chemicals that occur on site in the absence of site activities are defined as background concentrations. Background information is particularly significant for ecological receptors where effects on a site-impacted ecological population are compared to a "reference" or background area. Both human health and ecological risk assessments require background data collected from unimpacted areas for comparison with the site data. The identification of appropriate background/unimpacted areas should be carefully evaluated and agreed upon prior to field sample collection in order to provide analytical data that is credible for definition of background concentrations of chemicals of interest.
- 3. Are all exposure pathways and areas identified and examined? Exposure pathways will be defined as the risk assessment (RA) work plans are developed. However, the preliminary exposure pathways described in Section 6 are sufficient to identify data requirements for future sampling activities.

4. Are all exposure areas fully characterized? This data application question deals with data quantity and the representativeness of those data. Sufficient samples of each medium of concern should be collected for meaningful statistical analysis to be generated for each exposure area. Data sets should generally include at least 10 samples for each medium, however more samples may be required if the spatial or temporal variability of concentration data is expected to be large. The sampling approach should aim at assessing the extent and magnitude of contaminants in each medium by the most appropriate sampling regime (random sampling locations versus systematic sampling) for individual exposure areas or media. An exposure area is a section of the site (sometimes the entire site) where people or ecological receptors would encounter the chemical.

The following subsections present the data collection requirements for the completion of human health and ecological risk assessments. Data requirements for assessing risk to humans are presented based on potential exposure pathways. Ecological risk assessment data requirements are presented by media.

7.1.1 Human Health

The following data requirements have been identified for assessing post-closure health risks for the potential human health exposure pathways:

- Incidental ingestion, dermal exposure, and inhalation of vapors/dusts from impacted surface soil outside the boundaries of the proposed landfill cap. Surface soil samples from the impacted soil (top 0-1 foot below ground surface [bgs]) should be collected using either a random or stratified sampling approach.
- Inhalation of vapors emitted from groundwater and intruding into buildings Additional wells should be drilled to assess the lateral and vertical extent of potential groundwater impacts and the direction of groundwater movement. Sampling should occur over several seasons, if possible, to evaluate potential variability of concentrations over time due to seasonal fluxes. If groundwater impacted by volatile hazardous constituents from the landfill is suspected to occur near residences, groundwater samples from beneath or immediately adjacent to buildings should be collected. In addition, to evaluate vapor intrusion, specific soils properties data should be collected for use in vapor modeling.
- Ingestion, vapor inhalation, and absorption through the skin of hazardous constituents in groundwater used for domestic purposes If a groundwater plume is identified, nearby domestic water supply wells should be assessed for the potential to be affected by the plume. Sample collection requirements are as those described above for groundwater vapor inhalation.
- Incidental ingestion, inhalation, and dermal contact with surface water and sediment Sufficient samples should be collected to define the nature and extent of contamination. Surface water samples should be collected at varying points in time to assess potential seasonal variability as a function of water flow in the Lonfit River.

• Consumption of fish caught in the Lonfit River - Bioassay of tissue samples from the fish that people may eat is the preferable data collection method for evaluating this pathway. If fish cannot be collected, concentrations in fish may be modeled from surface water and sediment data.

7.1.2 Ecological

Sampling requirements for each medium of concern for assessing risk to ecological receptors and the associated species categories to be used for evaluating risks are as follow:

- Surface soil (0-1 foot bgs) Data should be collected as for human health, using random or stratified sampling methods. [Note that soil sampling efforts are limited to the impacted soil outside the boundaries of the landfill cap.] Samples should be collected from potentially impacted areas that provide decent habitat (e.g., the surface of the Dump might be impacted but contain no plants or animals). Surface soil data will be used to evaluate soil microbial processes, terrestrial plants and invertebrates, and burrowing and non-burrowing birds and mammals.
- Near surface soil (>1-6 feet bgs) Data shall be collected as described for surface soil.
 Data will be used to evaluate terrestrial plants and burrowing birds and mammals.
- Sediment (top 4 inches) Sufficient samples shall be collected to define impacted area. Data will be used to evaluate freshwater aquatic plants, benthic macroinvertebrates, and semi-aquatic birds and mammals.
- Surface water Sufficient samples shall be collected to define impacted areas and seasonal trends, if any, in water quality. These data will be used to evaluate freshwater aquatic plants and organisms, and semi-aquatic birds and mammals.

7.2 ENVIRONMENTAL DATA GAPS AND RECOMMENDATIONS BY MEDIUM

The following sections identify data gaps and provide sampling/analytical recommendations for leachate, soil, groundwater, surface water, sediment, and biota. These environmental data gaps have been identified as necessary to validate and/or refine the CSM presented in Section 6 and to fulfill the data needs for human health and ecological risk assessments as described in Section 7.2. The data gaps presented below include both physical and chemical sampling requirements. Physical data gaps relate to non-chemical aspects of the CSM, including hydrological and hydrogeological data gaps. Chemical data gaps are identified as relate to the COPCs for the Dump identified in Section 4.1 and summarized below:

- VOCs
- SVOCs (including PAHs)
- PCBs
- pesticides

- dioxins/furans
- explosives (nitroaromatics and nitramines)
- metals
- cyanide

These constituents include the Priority Toxic Pollutants listed in Appendix A GWQS (GEPA, 2002), as well as hazardous constituents associated with pyrolytic oil generated by landfill or tire fires.

Data gaps relating to landfill gas monitoring are not described in this report. A quantitative model and report on landfill gas generation for the dump is being prepared under separate cover for the EBS report submittal.

7.2.1 Leachate

Leaching of contaminants from refuse is usually the contaminant release mechanism of greatest concern at landfills (U.S. EPA, 1991), therefore a detailed analysis of leachate quantity and quality is critical for the evaluation of contaminant fate and transport and the identification of potential chemicals of concern in other environmental media. The available data for leachate identify total coliforms, indicator bacteria (E. coli, Enterrococci), nutrients, cyanide, metals, phenolic compounds, a pesticide (p-dichlorobenzene), and selected organic solvents as being potentially elevated in the leachate. Available leachate data are of questionable usability due to the age of the data, the elevated reporting limits (compared to screening levels) fore some constituents, uncertainties in sampling locations and methods, unidentified analytical methods or laboratories, and missing QA/QC information. In addition to the uncertainties relating to leachate chemistry, quantitative leachate flow data have not been collected.

In order to fill the identified data gaps, leachate discharge monitoring and sampling should be performed at all identified seeps at least twice (once during the wet season and once during the dry season). Leachate discharge from permanent leachate seeps should be measured by installing a weir or similar device in the leachate channel. Leachate samples should be collected concurrently with flow measurement to facilitate mass loading calculations for constituents being transported in the landfill leachate. Leachate samples should be analyzed at a minimum for the COPCs for the Dump identified in Section 4.1.

Leachate samples may also be analyzed for the one or more of the following parameters to provide data for leachate collection and treatment system design:

- BOD;
- COD;
- pH;
- TDS;

- TSS;
- oil and grease;
- TOC;
- chlorides;
- nitrate;
- nitrite;
- ammonia;
- phosphorus (total and ortho-phosphate);
- sulfides; and
- bacteria.

7.2.2 Soil and Geology

Existing environmental data for soil were not identified during the environmental data review. Elevated levels of chemical constituents in soil may result from direct contact with hazardous wastes disposed at the Dump, airborne transportation of hazardous constituents from the Dump, or direct contact between soil and leachate as leachate discharges around the perimeter of the dump and flows over the soil or from the infiltration of leachate into the soil. Soil data are required to refine the CSM and provide data for use in the Ecological and Human Health Risk Assessments.

To fill these data gaps, a one-time soil sampling event should be performed where soil samples are collected from shallow borings and/or test pits in or adjacent to each of the leachate seeps (outside of the limits of the refuse). Soil borings and/or test pits completed for the sampling should be monitored and logged in order to refine the CSM for subsurface conditions and to evaluate the thickness of saprolite and alluvium overlying the volcanic rock between the Dump toe and the Lonfit River. To assess the background levels, soil samples should also be collected from one or more areas outside the limits of the waste and the potential influence of leachate and airborne transport of hazardous constituents, if practical. Soil samples (including background samples) should be analyzed for the COPCs for the Dump identified in Section 4.1.

These analyses include Priority Toxic Pollutants listed in Appendix A GWQS (GEPA, 2002), as well as hazardous constituents associated with pyrolytic oil generated by landfill or tire fires.

7.2.3 Groundwater

Existing groundwater measurements and chemistry data are not sufficient to rigorously evaluate the potential impacts of leachate on groundwater near the Dump. The available groundwater data for sampling locations located downgradient of the Dump indicate that the Dump may be

contributing to elevated heavy metals and nutrient concentrations in shallow groundwater. However, existing groundwater data are insufficient to evaluate the occurrence and quality of groundwater in the volcanic rocks underlying the Dump and groundwater flow direction(s) and gradient(s) or velocity in perched and deeper groundwater zones. The utility of the available groundwater data is also limited by the age of the data, the elevated reporting limits (compared to screening levels), uncertainties in sampling locations and methods, unidentified analytical methods or laboratories, and missing QA/QC information. As the screened intervals for historical monitoring wells are unknown, the available groundwater data do not identify whether contaminants potentially generated at the Dump are traveling through the near surface or deeper (volcanic) geologic units or at all. The available groundwater data do not sufficiently characterize the nature and extent of potential increases in landfill leachate-associated chemical constituents relative to background conditions in groundwater. The locations and numbers of current domestic groundwater users near the Dump and the hydrogeology between the Dump and areas of domestic wells have not been identified to evaluate the potential for human exposure to leachate-impacted groundwater.

Due to the limited number of existing monitoring wells that can be located, the lack of boring logs and construction details (i.e., well depth and screened interval) for the existing wells, it is recommended that a video camera and downhole geophysical survey is conducted on existing wells without construction details and/or geologic logs. In addition, a minimum of eight additional monitoring wells should be installed at the site and sampled in conjunction with selected existing monitoring wells. The recommended locations include three new shallow monitoring wells and two deeper wells between and parallel to the southern boundary of the dump and the Lonfit River, and three new monitoring wells north-northeast of the Dump and south-southwest of the Adelup-Pago fault. The downgradient wells will assist in the evaluation of shallow groundwater flow and characteristics between the Dump and the river. The two deeper wells should be adjacent to shallow wells with known or suspected contaminated groundwater to assess vertical contaminant migration and gradients. The three new monitoring wells north of the Dump will allow for calculation of groundwater flow direction and gradient to the north of the Dump and thereby address background concentrations and concerns for potential migration of leachate-impacted groundwater into the NGL aquifer north of the fault. Confirmation of groundwater flow direction to the north of the Dump is critical for evaluating potential human exposure via groundwater, as described above. The new monitoring wells may also be incorporated in the Groundwater Monitoring Program required as part of the application for consent of continued operations and post-closure requirements for the Dump (URS, 2004).

Each of the new shallow monitoring wells should be screened in the first water-bearing zone encountered in the borehole. In order to evaluate the vertical extent of contamination (if present) and the groundwater flow gradient it is recommended that the two deeper monitoring wells located between the Dump and the Lonfit River be geologically logged in detail and downhole geophysical surveys conducted to assess the presence and lateral continuity of deeper groundwater. Borings for the shallow monitoring wells to be installed between the Dump and the river should be extended to the top of the alluvium/volcanics interface to determine the thickness of alluvium/saprolite adjacent to the Dump.

The new monitoring wells should be sampled in conjunction with accessible, existing monitoring wells at least twice (once during the dry season and once during the wet season). Groundwater samples should be analyzed at a minimum for the COPCs for the Dump (Section 4.1) and TOC.

Water level measurements in the wells should be collected on a monthly or quarterly basis for a period of one year to assess seasonal water level fluctuations and potential changes in groundwater flow direction. Slug or pumping tests should be performed in the wells to evaluate hydraulic conductivity and help assess groundwater flows and velocity near the Dump. Representative, undisturbed samples of the soils and rock should be laboratory tested for physical parameters including grain size, moisture content, total and effective porosity, and horizontal and vertical hydraulic conductivity.

To evaluate the potential for groundwater to pose a health risk to human populations near the Dump, the extent of any groundwater plumes must be identified and the relation and movement of the plumes to any existing groundwater domestic wells must be identified. As part of this evaluation, a survey of any existing domestic uses of groundwater should be performed. Well construction details should be compiled and groundwater levels and total depths should be collected for accessible wells. The hydrogeology between the Dump and areas of domestic wells needs to be assessed to evaluate whether there is a potential for contaminant migration to the groundwater zones that supply the domestic wells.

7.2.4 Surface Water

The existing analytical data set for surface water in the Lonfit River suggests that the Ordot Dump may be contributing to increased metals, nutrient, and COD concentrations in the Lonfit River. As described above for leachate, the available surface water data are of questionable usability due to the age of the data, the elevated reporting limits (compared to screening levels), uncertainties in sampling locations and methods, unidentified analytical methods or laboratories, and missing QA/QC information. Because analytical results for surface water are presented without accompanying river discharge measurements, mass loading calculations can not be performed to assess the influence of dilution from surface water or discharges from groundwater on chemical concentrations in the Lonfit River. Adequate background water quality data is also necessary.

In order to further evaluate the current conditions in the river and impacts to water quality that may be occurring as a result of leachate discharge, discharge monitoring and additional water quality sampling are recommended at monitoring locations upstream, adjacent, and downstream of the Dump. Monitoring locations upstream of the dump will also be used in the human health and ecological risk assessments to evaluate background conditions.

Discharge monitoring should be completed to quantify input to the Lonfit River adjacent to and downgradient of the Dump and to evaluate gaining or losing reaches of the river during different seasons (wet and dry). Discharge monitoring should be performed either by direct measurement, the establishment of gaging stations, or the development of rating curves for fixed measuring locations. Discharge measurements should be collected both upstream and downstream of influence from the Dump, at a minimum, and should be coordinated with leachate seep flow and groundwater level measurements to provide a more comprehensive data set to evaluate the

relative contribution of surface water versus groundwater discharges to the Lonfit River adjacent to the site.

Surface water sampling for chemical analysis should be performed at least twice (once during the wet season and once during the dry season) and should be coordinated with the discharge measurements described above. The coupling of discharge and water chemistry data will facilitate mass-loading calculations to help assess the relative contribution of the Dump to the loads (concentrations) of chemical constituents in the Lonfit River. Surface water samples should be analyzed at a minimum for the COPCs for the Dump identified in Section 4.1.

7.2.5 Sediment

The historical sediment data indicate potentially elevated concentrations of selected metals, SVOCs (phthalates and PAHs) and one pesticide (dieldrin). The existing data set for sediment analytical results is limited to only one sampling event in 1982. Results from the 1982 sampling were mostly inconclusive due to poor comparability between primary samples and field duplicates and other QC related issues, such as blank contamination. Relative abundance of sediment in the Lonfit River and associated floodplain and the depositional environments within the Lonfit River have not been described. As such, the available data for sediment do not sufficiently characterize current conditions and potential impacts from leachate.

In order to address environmental data gaps for sediment, sediment samples should be collected from the Lonfit River at locations upstream of, adjacent to, and downstream of the Dump. Monitoring locations upstream of the dump will also be used in the human health and ecological risk assessments to evaluate background conditions. During the sampling effort, total sediment thickness should be measured and channel profiles should be obtained to assess sediment distribution and scour/deposition areas. Samples should be collected from the top 4 inches of sediment, as described in Section 7.1. The Lonfit River sediment samples will help to evaluate changes in chemical characteristics of river sediment potentially resulting from leachate and help to assess the potential for ecological and human exposures. Sediment samples should be analyzed, at a minimum, for the COPCs for the Dump (Section 4.1) and TOC.

7.2.6 Biota

Existing environmental data for biota were not identified during the environmental data review. Data needs related to biota include the identification of resident species, especially those species which are ecologically important, endangered/threatened, have the potential for bioaccumulation or biomagnification of toxins, or used a food source for human consumption. Biological survey data are needed both for ecological and human health risk assessments. If species are identified that fit these categories, sampling and analysis of biota for hazardous constituents potentially associated with the Dump may be required to complete the risk assessments.

To fulfill these data gaps, existing surveys (such as the flora and fauna evaluation being prepared for the EBS) should be reviewed or field surveys should be conducted to determine the resident aquatic and terrestrial species near the Dump. After the resident species have been identified, the need for sampling and analysis of aquatic and terrestrial biota will be addressed during the development of the RI work plan.

7.3 SAMPLE QUANTITATION LIMIT REQUIREMENTS

The analytical methods used to assess chemical concentration must have adequate SQLs. SQLs are used in risk assessment data evaluations because they "take into account sample characteristics, sample preparation, and analytical adjustments" (U.S. EPA, 1989), and they are considered to be the most relevant quantitation limits for evaluating non-detected chemicals.

In order to meet risk assessment requirements, SQLs must be below the lowest screening value of the chemical based on applicable regulatory and guidance cleanup levels for the specific analyte and environmental media. Human and ecological risk assessments use different screening levels. If a chemical is not detected in a sample, it could be present at a concentration just below the reported SQL, or it may not be present in the sample at all. If the SQL is below the screening value, the resulting data set provides the risk assessor with a higher degree of certainty in identifying chemicals that might present a health risk. Generally, SQLs should be at least an order of magnitude below the relevant screening level, if at all possible. The following screening levels are most likely to be used for the Ordot Dump:

Human Health-Soil

• U.S. EPA Region 9 PRGs (U.S. EPA Region 9, 2004).

Human Health – Surface Water (non-drinking)

- Guam Numerical Criteria for Ingestion of Freshwater Organisms (GEPA, 2002); and
- U.S. EPA National Recommended Water Quality Criteria for Ingestion of Freshwater Organisms (U.S. EPA, 2002).

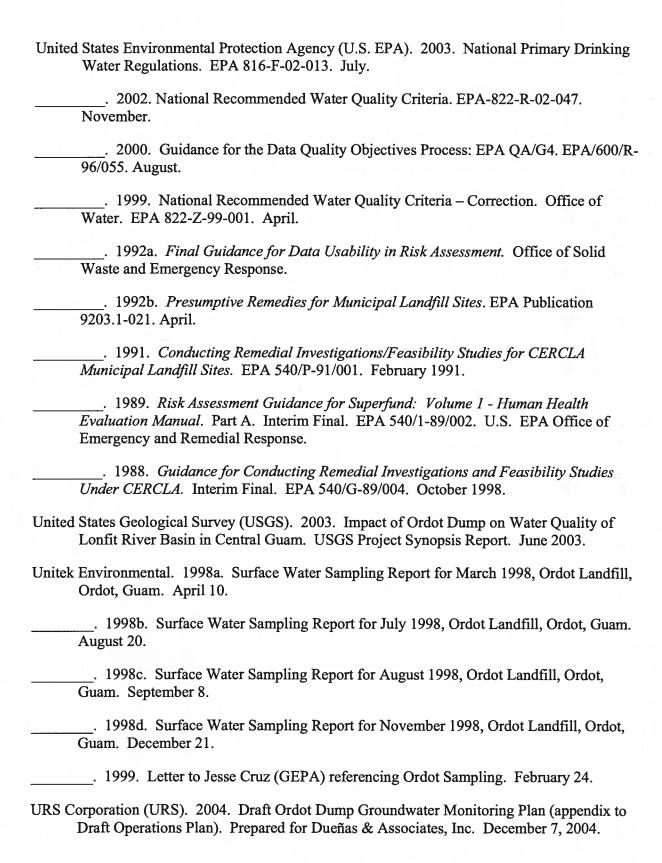
Human Health – Groundwater (used for drinking)

- GWQS (both primary and secondary) (GEPA, 2002);
- U.S. EPA Primary and Secondary Maximum Contaminant Levels (MCLs, U.S. EPA, 2003); and
- U.S. EPA Region 9 PRGs (U.S. EPA Region 9, 2004).

Ecological – Surface Water

- Guam Numerical Criteria for Freshwater Organisms (GEPA, 2002);
- U.S. EPA National Recommended Water Quality Criteria for freshwater organisms (U.S. EPA, 2002); and
- acute and chronic toxicity data obtained from the peer reviewed scientific literature.

Ecological – Sediment


• Toxicity Reference Values (TRVs) obtained from various peer reviewed sources in the United States and Canada (specifically the US National Oceanic and Atmospheric Administration and Environment Canada).

The specific analytical methods to be used for the RI will be identified through the development of data quality objectives (DQOs) as described in *Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA* (U.S. EPA, 1998) and *Guidance for the Data Quality Objectives Process* (U.S. EPA, 2000). The DQO process will result in the preparation of a sampling and analysis plan (SAP) which consists of a field sampling plan (FSP)

and a quality assurance project plan (QAPP). The QAPP will address the target SQLs by analysis for each medium to be sampled.

8.0 REFERENCES

- Barrett Consulting and Camp Dresser & McKee (CDM). 1982. Final Report, Northern Guam Lens Study, Groundwater Management Program, Aquifer Yield Report. December.
- Black and Veatch (B&V). 1983. Remedial Investigation, Insular Territory Hazardous Waste Sites (Draft Report). Prepared for U.S. EPA. May 20, 1983.
- Camp Dresser & McKee, Inc. (CDM). 1987. Initial Site Characterization Report, Ordot Landfill, Island of Guam. U.S. EPA Document Control Number 279-RI1-RT-EVYX-1. October 7, 1987.
- CH2MHill. 1987. Potentially Responsible Party Search. Prepared by U.S. EPA, Black & Veatch, ICF, PRC, and Ecology & Environment. January 13.
- _____. 1988. Risk Assessment, Ordot Landfill Site, Guam (Agency Review Draft).
 Prepared for U.S. EPA. July 8, 1988
- Dueñas & Associates, Inc. (D&A). 2004. Guam Municipal Solid Waste Landfill Facility (MSWLF) Site Selection Environmental Impact Statement (EIS).
- Greenleaf/Telesca-Ahn (GTA). 1970. Operational Plan for Solid Waste Management. December.
- Guam Environmental Protection Agency (GEPA). No date. Historical surface water water quality data for Pago and Lonfit Rivers, 1974 1977 and 1997 1998. Sent via e-mail to K. Rekdahl (D&A) August 2004.
- . 2002. Guam Water Quality Standards (GWQS), 2001 Revision. August 10.
- Juan C. Tenorio & Associates, Inc (JCTA). 1993. Feasibility Study for the Expansion of Ordot Sanitary Landfill, Municipality of Chalan Pago-Ordot, Territory of Guam. Volume II. Submitted to Department of Public Works. September 1993.
- . 1998. Ordot Landfill Closure Project, Work Plan. June 1998.
- Sharma, Hari D. and Sangeeta P. Lewis. 1994. Waste containment systems, waste stabilization, and landfills: design and evaluation. John Wiley and Sons, Inc.
- Tracey, J. I., S.O. Schanger, J.T. Stark, D.B. Doan, and H.G. May. 1964. General Geology of Guam: United States Geological Survey Professional Paper 403-A.
- United States Environmental Protection Agency (U.S. EPA) Region 9. 2004. Preliminary Remediation Goals. http://www.epa.gov/region09/waste/sfund/prg/index.htm.
- . 2002. Second Five-year Review Report, Ordot Landfill Site, Territory of Guam. September 2002.

- URS Corporation (URS). 2005. Landfill Fires Report, Ordot Dump, Ordot-Chalan Pago, Guam. Prepared for Dueñas and Associates, Inc. March.
- Water and Energy Research Institute (WERI) of the Western Pacific, University of Guam. 1989.

 The occurrence of certain pesticides in ground and surface waters associated with Ordot Landfill in Pago River Basin, Guam, Mariana Islands. TR No. 72. November 1989.

Table 1
Borings and Wells in the Ordot Dump Area
Ordot Dump
Territory of Guam

Report	Boring/Well ID	Approximate Ground Elevation (feet above MSL)	Well/Boring Depth (feet)	Screened Interval (feet bgs)	Depth to Water (feet bgs)	Approximate Water Table Elevation (feet above MSL)	Field Located
GTA 1970)						
	1	164	21	NA	NA	NA .	No
	2	-176	16	NA	NA	NA	No
	3	192	14	NA	NA	NA	No
	. 4	139	17	NA	NA	NA .	No
	5	230	27	NA	NA	NA .	No
	6	229	20	NA	NA	NA	No
	7	225	15	NA	NA	NA	No
	8	234	40	NA	NA	NA .	No
WERI 198	9						-11 -0.11
	Well 1	50	NA	NA	NA	NA I	No
	Well 2	50	NA	NA	NA	NA	No
	Well 3 (GW-6)	50	NA	NA	10	40	Yes
	Well 4	60	26	NA	15	45	No
	Well 5	60	NA	NA	NA	NA	No
	Well 6	60	NA	NA	NA	NA	No
	Well 7	70	NA	NA	NA	NA	No
	Well 8	70	NA	NA	10	40	No
	Well 9 (GW-4)	250	58	NA	20	45	Yes
EPA (UR	RS) 1992						
	MW-01	48	55	NA	28	21	Yes
	MW-02	159	211	NA	133	26	No
SGS 199	2			A	985 (6		- 10
	OMW-1	271	200	15 - 185	18	253	No
	OMW-2	273	202	32 - 202	12	261	No

Notes:

bgs - below ground surface

MSL - mean sea level

NA - not available or not applicable

Table 2 Semmary of Reports Reviewed Order Dump

Report Date	Author	Repri Title	Matrix	Sampling Detter	Number of Samples	Locations	Sempling	Amilyees	Analytical Laboratory QA/QC	OAQC	Other
			ì			1 location unstream, 2	No.				
Undeted	GEPA	Data tables provided to D&A (1974-1977 Deta)	MS .	1974-1977		below dump	NA NA	DO, DO set, FC, NO2, NO3, pH, P, Temp, Trss	Unkowa	NA	
			Calculatio			1 location					
					,	SW-1, 3W-2			2000		
May 20 1083	Black and Voltaret	Remedial Investigation, Insular Territory Hazardous	Leachate		•				Maria Compa Chem	W-14 4-12-14-1	
Cast to the	COLUMN AND A COLUMN	Waste Sites, Draft Report	į	November 10-12, 1982		8.1 92.5 52.7	NA.	Priority Pollutant Organics and Inorganics	Tarting Children	Fierd Ouplication, Tierd	Sampling plan reviewed and approved by EPA /
			8 80		• -	\$\$-9, \$\$-11 A-11			(N		OEFA.
			ì					Volatiles ami-volatiles nonicides PCBs		Find denlimber field	
			# S		7	SW-1, SW-2	Grab samples	inorganica		blanks. Report also	Work Plan. Semuline and Amsheis Plan. and
		The Late of the Contract of th	Lesohate		-	П	Grab samples	Inorganica, pesticidea, PCBs		identifies bagio field	Quality Assurance Project Plan were propered.
October 7, 1987	MG.	Landfill, Island of Guerra		March 10-16, 1987		OW-01 (A-11), GW-03	In-place pumps (A.11 and A.		Unknown	QA procedures	bowever not available for review. Leachets
			A 5		'n	1), GW-05 rell), GW	12); Tefon bullers (other	Volatiku, semi volatike, pesticides, PCBs, Inorganice		decontemination, semple collection,	sampse 5 w -/ thomas) was consersed rount a name excavated ditch in the pand after the ditch had filled with water.
September 1993	Juan C. Tenorio & Associates, Inc.		ž	××	N.		NA	SA.	NA	chain-of-custody, etc.)	Refers to WERI TR-72 for groundwater quality
		Gimm, Volume II									
Undated	GEPA	Data tables provided to D&A (1997-1998 data)	S.W	1007 - 1008		I location above, 1 location below dump	Tubus.	Temp, DO, pH, sel, Ent., E. Coli, turb, TSS,			
			Leschate			1 location	CARCIONE	TDS, TS, NO2, NO3, P-T, o-P, cond	Unknows	V _N	
July 8, 1988	CH2MHill / Black and Vehatch	Agmey Review Draft, Risk Assessment, Order	ž	¥	Ϋ́	NA.	NA NA	×	×	₹Z	Refer to COM 1087 and 24 to 1087
		The state of the s				Ţ		A de paper month.			
April 10, 1998	Unitek Environmental-Guara	Surface Water Sampling Report for March 1998,	AS.	March 20, 1998	3	SW-1, SW-2, SW-0	Beilers	4.4"-DUT, PCBs, TRPH, Total Metala (Al, As, Bs, Cd, Cs, Ct, Fe, Ph, Mg, Ma, K, Ns,	Environmental Laboratory of the	EPA Level III data	
	\neg	Ordot Landfill, Ordot, Guam	Leschate		2	SW-10, SW-5		Za), BOD, COD, NOZ+NO3, NO3, TKN, pH, P-T, TSS, TDS, TOC	Pacific (ELP) (Honolulu, HI)	package from	
Authorit 20, 1998	Ifnitek Florinamental Guara	Surface Water Sampling Report for July 1998, Ordor	A.S	Trip tope	3	SW-1, SW-2, SW-0	Pre-cleaned,	Total Metals (Al, As, Bs, Cd, Cs, Cc, Fe, Ph, Me, Me, R. Ne, Zal, BOD, COD.		EPA Lovel III data	A C. DOT. PO'Be and TB BU and and TOTAL
		Landfill, Ordor, Guam	Leachats	any to, 1996	2	SW-10, SW-5	dasposable plestic jugs	NO2+NO3, NO3, TRN, pH, P-T, TSS, TDS, TOC, NH3, temp		peckage from Indocutory	per June 2, 1998 letter from USEPA Region 9
Sentember 2 1008	I Tritate Employmental Com	Surface Water Sampling Report for August 1993,	A.S		3	SW-1, SW-2, SW-0	Pre-cleaned,	Total Metais (Al, As, Ba, Cd, Ca, Cr, Fe, Ph, Me. Me. Me. K. Na. Zei, ROD, COD.		EPA Level III data	
		Ordot Landfill, Ordot, Guern	Leachate	August 17, 1998	2	SW-10, SW-5	disposable plastio juga	NO2+NO3, NO3, TEN, pH, P-T, TSS, TDS, TOC, NH3, temp		package from laboratory	-
December 21, 1998	1 United Profrommental-Gram	Surface Water Sampling Report for November 1998,	M.S	A	1	SW-1, SW-2, SW-0	Pro-clemed,	Total Metals (Al, As, Ba, Cd, Ca, Cc, Fe, Pb, Mg, Ma, K, Na, Za), BOD, COD.		Summary data peolesge	
		Ordot Landfill, Ordot, Guern	Leachate	MOVEMBER 25, 1998	1	SW-10, SW-5	disposable plastic jugs	NO2+NO3, NO3, TICN, pH, P-T, TSS, TDS, TOC, NH3	APCL (Chine, CA)	from laboratory (no laboratory QC infb)	
February 24, 1999	9 Unitek Environmental-Guam	states to Mr. Iceae Criss (GFDA) we Order Generaline	SW	December 1998, January	9	SW-1, SW-2, SW-0		Total Metals (Al, Au, Ba, Cd, Ca, Cc, Fe, Pb, Mg, Ma, R, Na, Za), BOD, COD.			
			Leschate	6661	+	SW-10, SW-5	Y.	NOZ+NO3, NO3, TICN, pH. P-T, TSS, TDS, TOC, NH3, temp	¥	¥	Tabulated analytical results only
Management 1990	, and a	TR-72 The Occurence of Certain Pesticides in Ground	Ш	Monthly, June 1989		4.8,9, well A-11	Bladder pump	Chlorinsted pesticides, nitrogen-containing			
NOVEMBER 1707		and Surface Waters Associacted with Ordor Landfill in the Page River Basin, Guarn, Marians Islands	SW	November 1989	-	3W-0	Unknown	and phosphorus-containing pesticides, conductivity	Овісно чив	Unknown	

Report Date	Author	Report Title	Matrix	Sampling Dates	Number of Semokes	Locations	Sempling Method	Analyzes	Analytical Leboratory QA/QC	darge	Other
September 2002	UNEPA	Second Five-year Roview Report, Ordor Landfill Slin, Territory of Guern.	¥	₹	¥.	≴.	¥X	\$	МА	MA	The bulls and existing each yellow in 1846 & Vehecks 1955 WELL 1965 WELL 1996 WELL 1996 WELL 1996 URS Committee 1997 URS Committee 1997 URS Committee 1997 Uilleh Fehren 1998 Uilleh Fehren 1998 Uilleh April 1998
			Leschate	December 2002	7	Unknown (locations on southern face)		All priority pollutants listed under Guam Water Quelity Standards (GEPA 2001)	Unknown (off-island		0271
June 2003	NSGS	Impact of Ordot Dump on Water Quality of Lonfit River Basin in Central Guern	AS.	Monthly, October 2002 -		5 locations (unidentified) Unknown sampled monthly for cight months	Unknown	Tot Col, E. Coll, Est., NOr, NH4, ortho-P, dissolved metals (Ag. Cd, Cr, Cs, Fr, Hg, Ma, Ni, Ph, Za)		¥.	Analytical methods are specified in the report. Pore water metals results are available.
			Soil Fore Water	May 2003	Veriable •	S locations (midentifico) Suction cup Variable • sampled at 3 decytts neoathy for eight months fydmeters	Suction cup lysimeters	Tot Col, E. Coli, Em., NOr, NH4, artico-P., total metals (Ag. Cd, Cr, Cu, Fe, Hg, Ma, Mi, Pt, Za)	undown.		

Nistent Comp Dressor & Molface, Inc.

DMA: Dues a & Associates

DMA: Dues a & Associates

GENA: Cultum Environmental Protection Agency

GENA: Cultum Environmental Protection Agency

NA: not available

SW: pronofere a verifiable

SW: Provincemental Protection Agency

USERA: U. S. Condeyed SW: SW: SW:

We take 6: "Number of master veried by method, 99 samples mashyred besetcial counts, 21 samples malyzed for suririeus. Metain data not available.

WERI: Water and Energy Research Institute

Table 3
Surface Water and Leachate Analytical Results
Ordot Dump
Territory of Guam

L						-					
	Analyse	Ţ		0-MS	SW-1	SW-2	SW-5	SW.7	SW.0	QW.10	Guam Water
		1		Confluence of SW-	Lonfit River	Lonfit River	Leachate Stream	Leachate Pond	Leachate Stream	Leachate Stream	Quality Standards
t			I	10 and Lonni River	Upstream	Downstream	South	South	Southeast	West	(GWQS)
	ahminum	mg/L		8 0 0 0 0		6	80	2	-	10	-
_			THE LIMIT	0.0/601-0.38	0.0196 1-2.3	0.0477 3 - 0.56	0,0436 J - 4.58	0.358 - 3.583	2,56 - 2,56	0,0596 J - 1,24	
	antimony	7	min - max	0.0202 17	110001	110000	3	2	-	3	2
_			п	9	18		98	2	2	0.020	
	arsenic	mg/L	min - mex	0.005 U - 0.0025 J	0.000106 - 0.0137	0.0000092 - 0.0025 J	0.0000154 - 0.0091	ND - 0.01	ND - 0.0000157	0.0015 J - 0.012	0.150
_		Ľ	n n	7	61	6	71	2	2	=	
	Derivan	mg/L	min - max	0.0624 - 0.16	0.000625 - 0.207	0.0000625 - 0.025	0.0004494 - 0.273	0.24 - 0.307	0.0000625 - 0.199	0.113 - 0.44	ij
_			a		F	2		,	-		
	beryllium	7/8	min - max	0.0002 U	0.0002 U -	0.0002 U - 0.0005	0.0002 U - 0.011	0.0002 U - 0.005	0.005 U	0.0002 U - 0.005	ij
_	horron	J/oH	-	0	1	-	-		_	-	
-1-			min - max		0.10	0.10	0.458	4.98	96'0	1.02	E SE
_	cadmium	mg/L	min - max	0.001 U - 0.0013 U	41 0.0000133 - 0.00889	ND - 0.0000128	81 000 - ON	2 5	- 5	31	0.0011 (H)
_	calcium	me/L	=	6	10	6	10		0	10	
_			min - max	32 - 120	32 - 44	33 - 55	7,1-83	85.87		77 - 130	NE
	chromium (total)	1	min - max	0.00082 J - 0.0026 J	0.00006427 -	0.0003 U - 0.0023 J	0.000092 - 0.0278	ND-0011	ND-0.00013	34	0.21 (FI)
	cobalt	mg/L		0.0040	3	2	3	2	-	3	15
-	-	1		0.0048	26	ND - 0.0068 U	0.0068 U - 0.005	XD-0.013	₽-	0.0068 U - 0.004	N.
_	adilan		min - max	0.0131	0,0003 U - 0.084	0.0003 U - 0.002	0.01 - 0.0105	0.031 - 0.159	0.086	0.0017 - 0.101	0.012 (H)
SIR	iron	T/S	min - max	0.14-2.5	33	0.0047 - 1.1	01 11 4 68	2 20 20 20	1 226	36	3
ÞΜ) E	The The	5	7	42	20	61	2	2	\$1 - 710'A	
		1	min - max	0.001 - 0.013	0.0003 U - 0.0833	0.0000815 - 0.008 "	0.0000463 - 0.075	0.018 - 0.024	0.0000287 - 0.01	0.0003 U - 0.006	0.0032 (H)
	magnesium	mg/L	a ii	6 33	01	6	10	-	o	10	5
_		T	1	25-50	62.93	6.9 - 11	44.3 - 73	60.29		19.7 - 37	J. P.
_	minginese	mg/L	min - max	0,03 - 1.1	0.0038 - 0.122	0.005 - 0.88	0.046 - 0.636	0.772 - 3.161	1 28	36	見
_	mercury	mg/L	=	0		15	12	2	2	27	0.000013
-		T	- mar		0.0000105 - 0.077	0.0000018 - 0.0062	0.000014 - 0.0034	0.0002 U - 0.0328	0,0000208	0.0002 U - 0.0029	0.000014
_	pickel	ig a	min - max	0.023	0.0006 U - 0.023 U	0.0006 U - 0.051	0.004 U - 0.0178	0.004 U - 0.023 U	0.004 U	0.0027 - 0.0285	0.052 (H)
_	potassium	mg/L	min-max	9	10	9	01	1 20	0	10	叟
	selenium	me/L	п	-	13	3	13	2	2	3	
_		1	mm-max	0.125 U	0.0000237 - 0.00677	0.0000178 - ND	0.000022 - 0.00606	ND - 0.025 U	0.0000146 - ND	ND - 0.005 U	0.003
	silver	To The Table	min - max	0.0019 U	0.00000687 -	6.0000023 - 0.013	0.00000392 -	0.0051 U - 0.010	l _o	0.0001 U	0.0041 (H)
Ь_	mipos	T/all	-	6	01	6	10	-	0 0	1000	
		•	min - max	19 - 250	14.2 - 24	19.18 - 33	126.6 - 340	119.8		92.87 - 280	NE
	thallum		min - mex	0.16 U	0.01 U - 0.16 U	0.01 U	U910-0100	7 TO TO	0.01	3 00111-01611	0.0063
	Ð	7/	nim - max	0	01711	2	2 0 13 11	2	2	2	ž
_	Highest	1	2	-	2	2	0.17.0	0.170	0.170	0.170	
		1	min - max	0.0032 J	ND - 0.0065 J	ND-0.0036	0.0031 - 0.009	ND - 0.012	ND	0.0031 - 0.0056 J	NE
	zinc	T/Ser	min - max	0.0059 - 0.062	0.0001 11 - 0.058	19 0 0 11 0 00 0	10	2 0000	1	35	6.11 (B)
						1000	440	0.013 - 0.14	1000	0.0014 - 0.072	

Table 3
Surface Water and Leachate Analytical Results
Ordot Dump
Territory of Guam

L						Samula	Sample Identification and Location	.tion			
	Analyte	Unite		SW-0 Confluence of SW-	SW-1 Loofit River	SW-2 Lonfit River	SW-5 Leachain Stream	SW-7	5W-9	SW-10	Gram Water Quality Standards
				10 and Loofs River	Upstream	Downstream	South	South	Southeast	West	(GWQS)
	soctone	T/arr	8	0	2	2	2	2	1	2	1
			min - max		5 U- 2 JB	5U-2JB	SU-5.7B	5U-8JB	δŪ	SU-10U	NE
	2-butanone	ž	min - max		\$U-6.B	SI7-8.IR	STI. 12 B	411,1011	5 1 1011	2 2	2
	application orders	, and	g	0	2	2	2	2	2	30.70	
	Artification made and		min - max		\$U	SU	SU	SU-1.1	50	SU	Z
_	chlorobenzene	HE/L		•	-	-	1		1	1	00016
_			min max		SU	δū	ΩS	3.5	3.0	5.0	71000
	chloroethane	J.	-	0	- 1	-	-	-	1	1	NA.
_			Tarre Carre			2	30	20.		ΩS	
	1,1-dichloroethane	FE.	min - max	,	su	510	11.5	- 5	-		N
,	ethylbenzene	1/011	pi	0	1	-	-	-		7	
00			min - max		SU	şu	SU	SU	5.0	ns	29000
٨	2-hexanone	Fig.		0	-	-	1	1	-	1	Ę
_			mar.		2	n.	2	3G	SU	şn	2
	4-methyl-2-pentanone	He/L	min - max		ns	1.5	1 5	- 5	1.53		Z.
	mathedana oblemida	,	8	•	2	2	2	,	,	2	
	thoughout caroning	1	min - max		5.0	5 U - 2JB	3.U	su	şū	şn	1600
	styrene	Mg/L	-	0	2	2	2	2	2 -	2	Ę
			min - mex	ľ	\$U-J	SU	SU	S.U	SU	sv	AE
	toluene	Her	min - min			- 5		- 5	1	- ;	200000
_		j		٥	-	2		2	7	7	
	Varyt meeting	7.00	min-max		su	şū	su	s U	su	sū	ž
	xylenes	Mg/L		•	-	-	-	_	-	1	Ä
t			Time - Time	Š	2.	30	30	2	δŪ	δŪ	
	diethyl phthalate	Hg/L	min - max	•	20 U	200	7011	7011		2011	120000
30,	bes(2-ethylbesyl)	T/an	a	0	-	-		-	1	1	:
۸s	phthetate		min - mix		10 U	UOI	100	10 U	10 U	3.7B	3.9
	phenol	Fig.	ngin - max	5	1001	1101	101	1 01	T OI	1 6	460000
	aldrin	Tyan	a	9	0	0	0	0		9	
_			min - max	0.2 U						0.2 U	0.00014
_	BHC-alpha	He/L	min - mar	17410		0	٥	0	0	9	0.013
_	BHChess	J	п	9	۰	•	•	G	G	0.19	
_		į	min - max	0.4 U						0.4.0	0.046
epi:	BHC-delta	16 M	min . max	0211	0	0	0	0	0	9	見
e se in	0114	Į.		9	6	-	-			050	
4	Dric-gamma	100	min - max	0.2 U				>		020	0.063
	chlordane-alpha	Zán.	min - mer	9 1	0	0	٥	0	0	9	0.0022
	chlordane-pamma	Lea.	e	9	0	0	0	0	•	9	
			min - max	0.10						0,1 U	0.0022
	4,4°-DDD	FE.	nin .	14.40	0	0	0	0	0	9	0.00084
1			W							0.40	

Table 3
Surface Water and Leachate Analytical Results
Ordot Dump
Territory of Guam

Analyte					Dec illino		THOU			
	Z Coope		SW-0 Confluence of SW-	SW-1 Lonfit River	SW-2 Lonfit River	SW-5 Leachate Stream	SW-7 Leachate Pond	SW-9 Leachate Stream	SW-10 Leachate Stream	Quality Standards
			IN ING LOCATE KIVET	Upstream	Downstream	South	South	Southeast	West	(G)(G)
4.4.DDE	T/an	-	°	0	0	0	0	0	9	
		min - max	0.2 U						0.2 U	0.00059
44-DDT	Lan.	-		2	2	2	0	•	••	
		min - max	0.1 U - 0.4 U	0.1 U	0.10	0.1 U			0.1 U - 0.4 U	600000
diazinon	Tem	-	9	٥	0	0	0	0	9	,
	1	min - max	0.40						0.40	Į.
dieldrin	T/an	F	۰	-		1			7	
	2	min - max	0.2.0	0.1 U	0.1 U	0.10	0.1.0	0.1 U (0.21)	0.1 U - 0.2U	0.00014
endosulfan suifate	100/	6	٥		1.00		_		_	
		min - max		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U (0.35)	0.1.0	240
endrin	LIE/L		۰	0	0	0	•	0	٠	
		thin - max	02U						0.2 U	0.036
ethion	LIE/L	9	۰	0	0	0	0	٥	°	!
	•	min-max	0.4 U						0.40	
bentachlor	ma/L	a	9	0	0	0	•	°	°	
	2	min - max	0.24 U						0.24 U	0.00021
e malathion	.Van		9	0	0	0	0	٥	°	!
	٤	min - max	40.						2,4	Z
methoxychlor	Jan.	п	9	0	0	0	0	•	٠	!
		min max	0.2 U						0.2 U	Z
maleed	L'air		9	0	0	0	•	•	9	
		min - max	2.0						2.0	¥
perathion, ethyl	ne/L	п	ş	0	٥	0	0	0	9	ļ
		min - max	2 U						2.0	ž
parathion, methyl	T/or	q	9	•	0	0	0	0	•	!
		min - max	2 U						2.0	ij
PCB-1016	T/am	e	2	2	2	2	0	0	2	
	2	min - mex	10	10	10	10			21	0.00017
PCB-1221	J/on	•	2	2	2	2	0	•	7	
		min - max	2 U	2.0	20	2.0			3.0	0.00017
PCB-1232	T/all		2	2	2	2	0	°	~	
		min - max	ıΩ	10	10	10			ΩI	0.00017
PCB-1242	T/em		2		3	3	1		_	
		min - max	D.	0.1 U - 1 U	0.1 U - 1 U	0.1 U (3.84) - 1 U	0.1 U	0.10	0.1 U (1.12) - 1 U	0.00017
PCB-1248	7/91	4	2	2	2	2	0	0	2	9=10000
		min - max	2	a	ΩĪ	10			10	/1000T
PCB-1254	M/L	-	7	2	2	2	٥	0	2	2 10000
		7000 - 1000X		01	n i	D.T			10	0.00017
PCB-1260	7		7	7	2	2	0	0	2	2 41000 0
		min - max	2	10	n	10			10	0.00017
	5	a	2	2	2	2	0	0	2	
		min - max	1000 I	10001	10001	10001			10001	및

Table 3
Surface Water and Leachate Analytical Results
Ordot Dump
Territory of Guam

						Sample	Sample Identification and Location	thon			
	Analyte	Imies		SW-0	SW-1	SW-2	S.A.S	SW-7	0.782	CW.10	Guam Water
	ŀ			Confinence of SW-	Londt River	Loufft River	Leachate Stream	Leachate Pond	Leachate Stream	Leachate Stream	Quality Standards
ŀ				10 and Lonfit River	Upstream	Downstream	South	South	Southeast	West	(GWQS)
	ammonia	me/L	a	3	+	3	4	۰	٠	,	
_		1	min - max	0.031 - 32.2	0.06 U - 0.3	0.3 - 0.4	0.65 - 27.1			143.65	3.08
_	BOD	L/au		**	40	7	7	•			
- 1	1		min-max	1.6 - 14	0.3 J - 23	1.1 - 5,1	1.2 - 18			4.65	및
	000	me/L	п	9	9	7	80	•	•	3	
-		ŀ	min - max	34 - 190	10 U - 40	10 U - 67	\$6-270			24.200	吳
_	nitrogen as nitrate	me/l.	-	1	9	•	6	•	٠		
٠,			min - max	0.15 - 13	0.05 U - 0.32	0.23 - 0.85	1.67 - 19.4			2	07
נכנו	mirrogram as mitrite	T/om	ш	3	2	~	٠	•	-	4	
<u>.</u> ЭШ	1		min - max	0.481 - 0.708		0.042 - 0.77	0.04 - 3.4			AC 0 - FO O	ij
_	nitrogen (total Kieldahl)	me/L	a	,	80	9	6	0	0	•	
_	4		min - max	6.48 - 63	0.15 U - 0.8	0.68 - 0.84	3-9.94			W. 31	및
əqı	H	į		80	10	01	e	-	-	9	
٥	1	all D	min - max	7.4 - 8.1	7.839	6.85 - 8	6-8.15	7.8	7,4	275.74	6.5.9
	phosphorous (total)	me/L	_	,	7	9	80	•	۰		
_	†	ŀ	min - max	0.1 U - 0.2	0.01 U - 0.54	0.1 U - 0.77	0,02 J - 0.121			0.09 - 0.54	0.05
	SCL	ms/L	п	٩	6	-	6	•	0	٥	
			min - max	210 - 1100	150 - 240	160 - 350	1000 - 1500			\$60-1400	¥
_	100	me/f.	E	6	6	*	6		٩		
		ŀ	min - max	2.1 - 45.3	I U - 3.2	1 - 3.3	19.9 - 47			19.8.80	Z
	TSS	me/L	e	٥	7	7	80	•			
1			min - mex	1 - 19	1 - 220	10.9	1.6 - 66.5			63.38	8

Notes:

* Primary sample snatytical result was not confirmed by field deplicate

* Standard is for Calordane

* Standard is for total PCBs

* GWQS for unmonis in pH-dependent. Value shown is for pH of 7.

* Value shown is GWQS for ortho-phosphate

n = manber of primary analytical result

min rang v = nage of lowest detected concentration (or reporting limit if not detected) to maximum detected concentration (or reporting limit if not detecte

min rang v = nage of lowest detected concentration (or reporting limit if not detecte

B = Constituent was detected in the associated absorbery blant

GWQS = Courn Ware Totality Standards (GEA, 2001), GWQS shown are the most stringest of freshwater CMCCCCC and human health (consumption of organism cuby) criteri

(B) = CWQS is increased-expendent. Value thorwn is for a hardness of 100 mg/L

1 = Enthassed value

NE = QWQS is not established for this countinent

U = The analyte was not detected at the reporting limit abover.

Table 4
Historical Groundwater Analytical Results
Ordot Dump
Territory of Guam

f Site	Weil 9 (GW-4) Background Well Dov North 1 77 1 20 U 1 10 U 1 9 9 9 9 1 43 U 43 U 1 43 U 1 43 U 1 43 U 1 43 U 88 U 1 1 68 U	Downgradient Well South 1 1 20 U 1 1 1 190 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W-5 Well 3 (GW-6) Mel 3 (GW-6)		Weil 8 Downgradient Weil South 1 831 831 831 1 1 1 10 U 1 10 U 1 1 15 15 16 16 17 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Northeast of Site O O O O O	MW-02 USEPA Well Northeast of Site 0 0 0 0 0 0	Screening Level (GWQS or PRG) 50 6 6 50 2000 2000 7300 (PRG)
	──╂┼┠┼╏┼┈┞┼┈╚╎╏╏╏╏	South 1 1 1 20 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Downgradient Well South 1 1 831 1 1 1 10 U 1 1 10 U 1 1 1 143 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Downgradient Well South 1 1 831 1 1 20 U 1 10 U 1 10 U 1 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Downgradient Well South 1 1 831 1 20 U 1 10 U 1 1 1 10 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	USEPA Well Northeast of Site 0 0 0 0 0	USEPA well Northeast of Site 0 0 0 0 0 0 0	(GWQS or PRG) 50 6 50 2000 7300 (PRG)
And the second s	Norm 1 77 77 10 10 10 10 10 10 11 11 11 11 13 10 11 11 11 11 11 11 11 11 11 11 11 11	Soruth 1 837 1 10 10 10 10 10 10 11 430 11 41,610 11 11 41,610 11 11 41,610 11 11 41,610 11 11 41,610 11 11 41,610 11 11 41,610 11 11 41,610 11 11 41,610 11 11 41,610 11 11 41,610 11 11 41,610 11 41,610 11 41,610 11 41,610 11 41,610 11 41,610 11 41,610 11 41,610	Well South 1 831 1 1 1 1 1 10 10 1 1 1 1 1 1 1 43 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Well South 1 831 1 831 1 100 100 11 100 11 1430 11 430 11 430 11 11 11 11 11 11 11 11 11 11 11 11 11	Weil South 1 831 1 831 1 1 1 10 U 1 10 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Northeast of Site	Northeast of Site 0 0 0 0 0 0	50 6 50 2000 4 7300 (PRG)
45 1 200 1 100 1 620 0 0 0 1 430 13,800 13,800 13,70 1 13,800	77 1 20U 1 1 1 10U 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1	837 1 1 10 U	831 1 1 1 20U 1 10U 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1	1 1 1 20U 1 1 10U 1 1 15 15 1 0 0 0 0 0 0 1 43 U 1 43 U 1 43 U	1 831 1 20U 20U 1 1 1 10 U 10 15 15 15 16 17 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	0 0 0 0		50 50 2000 4 7300 (PRG)
20U 1 10U 10U 1 2 5 5 1 0 0 0 1300 13800 10800 1	20U 1 1 10U 1 0 0 0 0 0 1 1 43U 1 43U 1 37U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 U 10	1 20U 10U 10U 13 13 10 0 0 0 0 0 13 11 11 12 13 13 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	1 1 10 U 1 1 1 1 1 1 0 0 0 0 0 0 0 1 43 U 1 43 U 1 1 43 U	100 200 1 1 100 100 15 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	0 0 0		50 2000 4 7300 (PRG)
20.0 1 10.0 1 2 5 1 0 0 0 13.00 11.800 11.	20U 1 10U 1 9 9 1 02U 0 0 1 1 43U 1 33930 1 1 33930 1 1 1 1 1 1 1 1 1 1 1 1 1	20U 1 100 1 1 190 0 0 0 0 0 0 1 1 4,3U 1 1 1,610 1 1,510 1 1 1,510 1 1,510 1 1,510 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20U 1 10U 13 13 13 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	20U 1 10U 1 15 15 16 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	20U 1 1 10 U 15 15 16 U 0 0 0			50 2000 4 7300 (PRG)
1 10 0 1 1 1 2 2 0 0 0 0 0 0 113800 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 U 1 1 9 9 1 1 6.2 U 0 0 0 0 1 1 1 1 23,230 1 1 3,7 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 100 1 190 020 0 0 0 1 41,610 1 1 1 1 1 1,610 1 1 1 1 1 1,610 1 1 1,610 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 U 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1	10 U 1 15 15 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 10 U 1 15 15 0 0 0 0	0 0	0 0 0	50 2000 4 7300 (PRG)
10 U 1	10 U 1 1 9 9 1 1 0.2 U 0 0 0 1 1 4.3 U 1 53,930 1 1 1 3.7 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 U 190 190 0.2 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 U 15 15 15 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 U 15 15 15 16 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 U 1 15 15 0 0 0 1	0 0	0 0 0	50 2000 4 7300 (PRG)
5 1 0.2 U 0 0 1 13.00 1	9 9 1 1 02 0 0 0 0 1 1 43 1 1 37 0 58,0 68 1 1	1 190 190 0 0 0 0 0 1 1,510 1,	1 13 02U 0 0 1 43U 1.	15 15 020 0 0 1 1 430 1 1 1 1 85,060	15 15 002 U 0 0	0 0	0 0 0	2000 4 7300 (PRG)
5 1 0 0 0 1 1 43 U 13800 1 37 U	9 1 0020 0 0 1 430 1 370 680	190 1 0.2 U 0 0 0 1 1 43 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 0 2 U 0 0 0 0 1 1 4.3 U	15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 020 0 0	0 0	0 0 0	2000 4 7300 (PRG)
1 020 0 0 1 1 1 13,800 1 3,70	1 020 0 0 1 430 1 1 370 680	1 02 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4.3 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 020 0 0 0 0 43U 1 1 1 1 85,060	0000	0 0	0 0	7300 (PRG)
02 U 0 0 13 U 13 800 1 37 U	02 U 0 0 1 1 43 U 1 37 U 68 U	0 02 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	020 0 0 1 43U 43U	02 U 0 0 1 43 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.2 U 0 0	0 0	0 0	7300 (PRG)
13 800 113 800 113 800	68U	1 1 1 1 1 1 1 1 1 1 1 1 1 1 6,80	43 U	43.0 85,060	0 0 1	0	0 0	7300 (PRG)
43.0 1 1 113,800 1 1 3,7.0	1 4.3 U 53,930 1 1 3.7 U 6.8 U	1 1 1 1,610 1 3.7 U	1 43U	43.U 1 1 85,060		•	0 0	7300 (PRG)
1 43 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.3 U 1. 53,930 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 1 41,610 1 1 1 1 1 6.8 U	1 430 1	1 4.3 U 1 85,060	1 1 4 3 11		0	
43.0 1 113,800 1 3.7.0	43 U 1 25,930 1 1,1 3,7 U 6,8 U	43 U 1 41,610 1 3.7 U 6.8 U	43 U	4.3 U 1 85,060	4311	e	•	~
113,800 1 3,7 U	1 53,930 1 3.7 U 6.8 U	41,610 1 3.7 U 6.8 U	÷	1 85,060 1	2	,		,
3.7 U	3.7 U 1 1 1 6.8 U	41,010 1 3.7 U 1 6.8 U		85,060	_	٥	۰	Ä
3.7 U	3.7 U 1 6.8 U	3.7 U 1 6.8 U	82,060		85,060			2
-	1 6.8 U	1 0.8.0	3.7 U	3.70	3.7 U	>	5	001
	6.8 U	0.8 U	-	1	-	0		10000000
0.80			6.8 U	6.8 U	6.8 U			73 (PRU)
-02	5011		- %	1,00	- ;	•	0	1300 (Primary)
-	-			, -	ξ -		c	1000 (Secondary)
65	124	631	895	895	895	,	>	300 (Secondary)
50	115	1 1 2	411(4.9)	1 4 11 (6 0)	611760)	0	0	15
1	-	-	-		1 2	0	c	
3,215	7,491	31,210	59,130	59,130	59,130	,	•	NE
- 4	-10	1 00	- 8	- 8	-	0	۰	50 (Secondary)
		-	7	*-	76		·	
1.06 j	0,2 U	0.2 U	0.2 U	0.2 U	0.2 U	>	>	7
23.11	73 12	- 15	1	1	1	0	0	001
	<u></u>	3,6	0 67	067	73 0	c		
948 U	948 U	948 U	948 U	948 U	948 U		> ,	NE
1 5 U	1 5 U	1 115	1 115	1	1	0	0	20
1	1		-	2-		6	c	
5.1 U	0 1.8	5.1 U	5.1 U	5.1 U	5.1 U		,	100 (Secondary)
8,674	12.880	38.650	1 62 130	1 60 130	1 62 130	•	0	NE
_	1	_	-	-	1	·	c	
10 U	10 U	10 U	10 N	10 0	10 U			6.5
17.0	17.0	17.0	17.0	1711	1 1 11	0	•	22000 (PRG)
2111	1	- ;	-;	-	_	0	0	CORGO (DEC.)
	01.6	0.0		6.9	6.9	ľ	ļ	
45	20	137	162	162	162	,	•	5000 (Secondary)
11.11.11.11.11.11.11.11.11.11.11.11.11.	574 00 10 10 10 10	3 1 2	12,800 38,6 1,800 10 1,00 10 1,10 10 1,10 11 3,10 3,4 2,0 13	12,880 38,650 6 1,800 10,0 1 1 1 170 170 170 170 1 1 1 2,10 3,6 1 1 1 2,0 137	12,880 38,650 62,130 6 1 1 1 1 1 1 1 1 1	12,80 3,650 62,130 62,	12,850 38,650 62,130 6	12.860 38,650 62,130 6

Table 4
Historical Groundwater Analytical Results
Ordot Dump
Territory of Guam

							Sample Idea	utification and Local	tion				
	Analyte	Chit		GW-1	GW-3	(P-M5) 6 [IPM	GW-5	GW-5 Well 3 (GW-6)	Well 4	Well 8	MW-01	MW-02	Screening Level
				Municipal Well A- 11 Northeast of Site	Municipal Well A-12 Northeast of Site	Background Well	Downgradient Well	Downgradient Well South	Downgradient Well South	Downgradient	USEPA Well	USEPA Well	(GWQS or PRG)
		1	п	2			-	Hell South	Well Souli	weil South	Northeast of Site	Northeast of Site	300
	accome	Tage	į	J - 10 U (4JB)	3.JB	3.18	3.18	3.78	3.78	3.18	•	•	610 (PRG)
	2-butanone	T/8H	- i	2	- 5	1	-	-	_	1	0	0	0000
	3	Ľ	+	20-100	10.8	O OI	10 8	81.6	81.6	9 JB			1900 (PRG)
	carbon disuinde	He/L	min - max	su	şū	3.0	ns	5.11	1 1 5		•	٥	1000 (PRG)
	chlombenzene	1100	ш	1	_	-			<u>-</u>				
		7	тіп - тах	su .	SU	S U	su	si	s U	su	>	0	110 (PRG)
	chloroethane	µg/L	n mim	1	0	0	0	0	0	0	0	0	17 (2000)
	1.1	Ľ	┿	2				·					4.0 (FRU)
	chloroform	µg/L	min		>		2	5	0	0	 ∮		100
	1.1-dichlomethane	110/1		-	0	0	0	٥	°	G	2	30 C	
S	\perp		ē	5.0					,	,	>	>	810 (PRG)
200	ethylbenzene	1/8rt	а			-	1	-	1	1	0	٥	
٨		\downarrow	min - max	20	ns c	ος	s u	SU	su	su			700
	2-hexanone	T/gH	min - max	139		3	0	0	0	0	0	0	NE
	4-methyl-2-pentanone	T/am	и	I	0	0	0	°	٥	e	•	,	
			min - max	su			V				•	,	13 (PRG)
	methylene chloride	Hg/L	a	2	- 1	-		-	1	1	0	0	()
		Ľ	מוווי ב וווויו	200	2 JB	200	3.18	S.U	S.U	s u			4.3 (PKG)
	styrene	hg/L	min - max	ŝū	s u	15	115	- 5	- 1		0	0	100
	toluene	1/6/1	u u	1	1	-	-	1		-	6		
		e l	min - max	SU	1 JB	1.78	SU	1.73	1.18	Er I	•	>	1000
	vinyl acetate	Hg/L	min - max	SU	0	0	0	0	0	0	0	0	410 (PRG)
	xylenes	110/1.	r	1	-	_	1	-	-	-	c		
1			тып - тах	SU	5.0	SU	SU	5.0	5.0	5.0		>	10,000
	diethyl phthalate	T/Sht	min - max	2017	0	0	0	٥	0	0	0	0	29 000 08(3)
	di-N-butvinbrhalate	1,011	E	0	0	0	0	0	•			-	Colona (taxa)
		1	min - max							,		. QS	3,600 (PRG)
EX		T/Brt	min - max	0	0	0	0	0	0	٥	-	0	15
OAS	bis	L/att	e	1	1	1	ı		-	-	8D	ľ	<u></u>
	phthalate	2	min - max	2 JB	2 JB	88	2.18	S JB	5.TB	5 JB	,	•	9
	1(3H) isobenzofuranone	µg/L	min - max		0	0	0	0	0	0	- (- :	N.
	phenol	T/an	и	-	_	-	_	-	-	-	200	S D	
1			min - max	10 U	5.1	10 U	10 0	10 U	10 U	10 U		,	22,000 (PRG)
_	aldrin	µg/L	min - max	0.2 U	Þ	0.2.0	0	90311	9	9	0	0	0.004 (PRG)
	BHC-alpha	Hg/L	e	9	0	9	0	9	9	9		G	
			with - milk	0.16 U	ľ	0.16 U	ľ	0.16 U	0.16 U	0.16 U			0.011 (PRG)
501	BHC-beta	µg/L	min - max	0.4 U		0.4 U		041	6	9	0	٥	0.037 (PRG)
pioii	BHC-delta	J/8H	г.	9	0	9	0	9	9	9	0	0	
Pes			mım - max	0.20		0.2 U	,	0.2 U	0.2 U	0.2 U			NE
	БПС-дашта	Hg/L	min - max	0.2 U		0.2 U		0.2 U	0.2 U	0.211	•	0	07
	chlordane-alpha	µg/L	n min - max	0.1.0	0	91.0	0	9	9 11 10	9	•		2,2
	chlordane-gamma	He/L	п.	9	0	9	0	9	9	9	·	c	
			XRIII - IIIIII	0.10		0.1 U		0.1 U	0.10	0.1 U			2

Table 4 Historical Groundwater Analytical Results Ordot Dump Territory of Gusm

	_	: E	T	-	ī	-	Т	_	Т		T		Т	_	Т	_	Т		Т	_	Т		Т	-	Т		Т		Т		Т	_	_		Т	_
	Someoning I evel	(GWQS or PRG)		0.28 (PRG)		0.2 (PRG)		02 (PRG)		33 (PRG)		0.0042 (PRG)		220 (PRG)		7		18 (PRG)		4.0		730 (PRG)		Q		22		220 (PRG)		Z20 (PRG)		0.5		200	28-29	(Secondary)
	MW-02	USEPA Well	•	•	0	•	-	,	c	•	F	•	٥	•	9	•	0		0	,	0		0	,	0	•	0	•	0		0		0		0	
	MW-01	USEPA Well	ď		٥	,	٥	,	°	•	۰		٥	•	c		٥		٥		0		0		۰	•	٥	٠	0		۰		°		٥	
	Well 8	Downgradient Well South	9	0.4.0	9	0.2 U	9	0.4 U	٥	0.40	9	0.2 U	٥		٠	0.2 U	9	0.4 U	9	0.24 U	°	40	9	02 U	°	2.0	9	2.0	9	2.0	•		-	10 D	-	6.8
tion	Well 4	Downgradient Well South	9	0.4 U	9	0.2.0	9	0.4 U	9	0.4 U	9	0.2 U	٥		9	0.2 U	9	0.4 U	9	0.24 U	9	40	9	0.2 U	9	2.0	9	2 U	9	2 U	°		-	O 01	_	8.9
Sample Identification and Location	Well 3 (GW-6)	Downgradient Well South	°	0.4 U	9	0.2 U	9	0.4 U	9	0.4 U	9	020	0		٥	0.2 U	9	0.4 U	9	0.24 U	9	Ω+	9	0.2.0	9	2.0.	9	2 U	9	2 U	0		-1	10 U	-	8.9
Sample Ide	GW-5	Downgradient Well South	0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		1	10 U	-	627
	Well 9 (GW-4)	Background Well North	۰	0.4 U	9	0.2 U	9	0.4 U	9	0.4 U	9	0.2 U	0		9	0.2 U	9	0,4 U	9	0.24 U	9	40	9	02 U	9	2.0	9	2.0	9	2.0	0		1	10 U	1	7.26
	GW-3	Municipal Well A-12 Northeast of Site	0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		1	91	-	6.71
	GW-1	Municipal Well A-	9	0.4 U	9	0.2 U	. 9	0.4 U	9	0.4 U	7	0.1 U - 0.2 U	1	0.1.0	9	02 U	9	0.4 U	9	0.24 U	9	4 U	9	0.2 U	٥	2.0	9	2.0	9	2 U	-	1.0	1	10 U	2	6.75 - 6.90
	*****		E	min - max	п	min - max	п	min - max	E	min - max	-	min - max	_	min - max	ď	min - max	п	min - max	п	min - max	a	min - max		min - max	r	min - max	c	min - max	c	min - max	=	min - max	u	min - max	и	min - max
	Inje	9	\ \frac{1}{2}	1	1/0/1	1	1/0/1		1/01/	2	1/0/1	2	1/4/1	2	1/411	1	us/L		T/am	,	ne/L		ne/L		110/J.		1/0/1	1	107		110/1			7.84	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3
	Analyte	arfram.	4 4".000	of Committee	4.4'-DDE	200	4.4'-DDT		diazinon		dieldrin		endosulfan sulfate		endrin		ethion		heptachlor		malathion		methoxychlor		naled		parathion, ethyl		parathion methy!		PCB-1242			2	7	
				_		_								8	CB	d 3	89	bio	itea	ıd T	_			_		_	_	_				1	£10]:	TREEL	131 131	Ф

Standard is for Chlordane

Standard is for total PCBs
 Screening levels are OWQS Water Quality Criteris for Groundwater, if established, or EPA Region 9 PRGs.
 Screening levels are OWQS Water Quality Criteris for Groundwater, if established, or EPA Region 9 PRGs.
 a number of primary analytical results
 min - max = range of lowest detected concentration (or reporting limit if not detected) to maximum detected concentration (or reporting limit if not detected).
 B = Constituent was detected in the associated aboratory blank
 GWQS = Guan Water Quality Sandards (GEPA 2001).
 J = Estimated washe
 NE = GWQS or PRGs is not established for this constituent.
 U = The analyze was not detected at the reporting limit shown.

Table 5
Historical Sediment Analytical Data With Organic Compounds
Ordot Dump
Territory of Guam

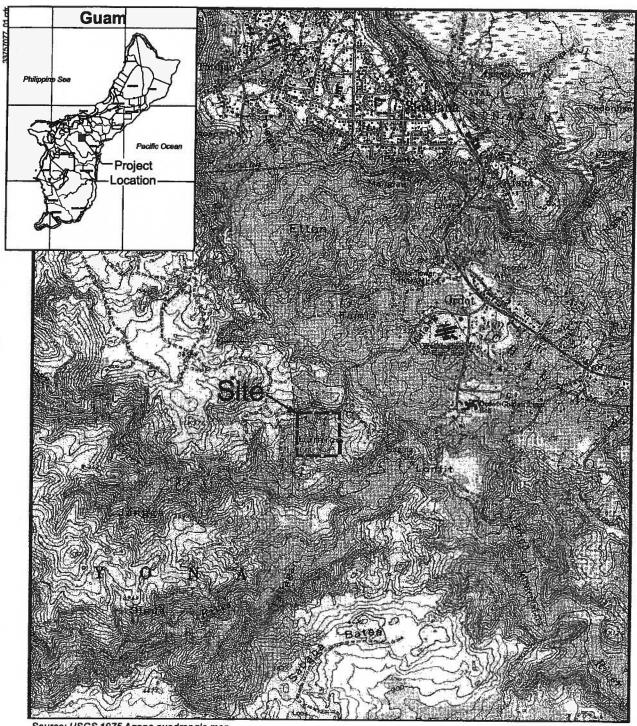
					Sample Identifica	Sample Identification and Location			
			00.1	600	4 00	200	1		Preliminary
			Lonfit River	SS-3 Leachate Stream	SS-5 Leachate Stream	SS-7	Leachate Pond Leachate Stream	SS-11	Remediation Goal
Analysis	Analyte	Units	Upstream	West		South	Southeast	Downstream	(PRG)
	aluminum	mg/kg	13,700	7,440	21,500	12,200	12,900	14.000	76000 (RS)
	anitimony	mg/kg	ΙŪ	1 U (1.2)	Ω1	1	10	1.0	0.3 (GW)
	arsenic	mg/kg	6.0	0.5	1.1	9.0	6.0	6.0	0.39 (RS)
	barium	mg/kg	252	91	49.1	38	22.9	129	82 (GW)
	beryllium	mg/kg	0.3	0.3 U	0.3 U	0.3 U (0.3)	0.3 U	0.2	3 (GW)
	boron	mg/kg	16.7	23.8	31	18.8	15	17	16000 (RS)
	cadmium	mg/kg	0.05	0.1	0.05 U	0.1	0.2	0.05	0.4 (GW)
	chromium (total)	mg/kg	30.8	16.4	46.1	24.3	20.3	24.1	2 (GW)
	cobalt	mg/kg	25.2	17	14.8	15.3	9.3	19.3	900 (RS)
sls	copper	mg/kg	33.7	23.7	29.7	30.5	26.2	28.9	3100 (RS)
təlv	iron	mg/kg	19,400	13,000	36,600	14,900	14,600	20,800	23000 (RS)
I	manganese	mg/kg	1,370	2,350	936	360	373	402	1800 (RS)
	lead	mg/kg	12	32	6.8	34	24	11	400 (RS)
	mercury	mg/kg	3.2	2.6	4.4	3.1	2.2	11	23 (RS)
	nickel	mg/kg	2 U (52.3)	22.1	26.4	26.4	17.2	37	7 (GW)
	selenium	mg/kg	Ð	QN	æ	QN	QN ON	£	0.3 (GW)
	silver	mg/kg	£	Q.	QN QN	QN	ON.	Ð	2 (GW)
	thallium	mg/kg	Ð	Q.	Q.	QN	QN	£	5.2 (RS)
	tin	mg/kg	1 U	1 U (1.4)	1.7	1 U	1 U (1.2)	10	47000 (RS)
	vanadium	mg/kg	47.7	27.8	58.2	42.3	30.8	34.6	300 (GW)
	zinc	mg/kg	26.2	0.5 U (108)	35.5	53.8	54.6	27	620 (GW)
spui	acetone	ng/kg	20 U	20 U	50 U	20 U	50 U	S0 U	800 (GW)
nod	chlorobenzene	ug/kg	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	70 (GW)
шо	chloroethane	ng/kg	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	3000 (RS)
) oi (a)	fluorofrichloromethane	ug/kg	6.8 (7.6)	2.5 U	11.3 (12.2)	2.5 U	2.5 U	2.5 U	390000 (RS)
VO Ran	methylene chloride	ga/gu	35.6 (11.0)	80.5 (30.6)	30.6 (54.6)	37.0 (67.0)	55.8 (64.8)	29.0 (25.0)	1 (GW)
1O :	o-xylene	ng/kg	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	10000 (GW)
atile	styrene	ug/kg	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	200 (GW)
ΙοV	1,1,2,2-tetrachioroethane	ng/kg	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	0.2 (GW)
	toluene	ug/kg	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	(MS) 009

Table 5
Historical Sediment Analytical Data With Organic Compounds
Ordot Dump Territory of Guam

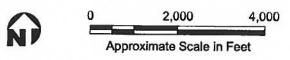
					Sample Identifica	Sample Identification and Location			
			SS-1	_	SS-5	Z-SS		SS-11	Preliminary Demodiation Goal
Analysis	Analyte	Thite	Unstream	Leachate Stream	Leachate Stream	Leachate Pond	Leachate Stream	Lonfit River	(PRG)
			8	The second second			Dominage	DOWNSHOULL	
səpi	BHC-Gamma	ng/kg	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	0.5 (GW)
stic	dieldrin	ng/kg	4.0 U	4.0 U	4.0 U	4.0 U	22.6 (35.2)	4.0 U	0.2 (GW)
Pe	heptachlor epoxide	ug/kg	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	30 (GW)
	aniline	ng/kg	400 U	400 U	400 U (2,002)	400 U	400 U	400 U	85000 (RS)
	benzo (a) anthracene	ug/kg	400 U	400 U	400 U	400 U	400 U	400 U	80 (GW)
lov- 72)	bis (2-ethylhexyl) phthalate	ng/kg	400 U	400 U	400 U	400 U	1,396 (1,524)	400 U	35000 (RS)
	butyl benzyl phthalate	ug/kg	972 (400 U)	400 U	3,240 (400 U)	400 U (1,800)	2,513 (8,001)	400 U	810000 (GW)
	chrysene	ng/kg	400 U	400 U	400 U	400 U	400 U	400 U	8000 (GW)
	diethyl phthalate	ng/kg	400 U	400 U	400 U	400 U	400 U	400 U	49000000 (RS)
	di-n-octyl phthalate	ng/kg	400 U	400 U	400 U	400 U	400 U	400 U	2400000 (RS)
	fluoranthene	ng/kg	400 U	400 U	400 U	400 U	400 U (1,676)	400 U	210000 (GW)
,	pyrene	ng/kg	400 U	400 U	400 U	400 U	400 U (1,674)	400 U	210000 (GW)

Notes:
Concentrations in parentheses are for corresponding duplicate sample.
GW = soil screening level for protection of groundwater (from EPA Region 9 PRG Table)

mg/kg = milligrams per kilogram


ND = not detected, reporting limit is not available

PRG = Preliminary remediation goal from EPA Region 9 Table


RS = PRG for residential soil

U = not detected at reporting limit shown

ug/kg = micrograms per kilogram

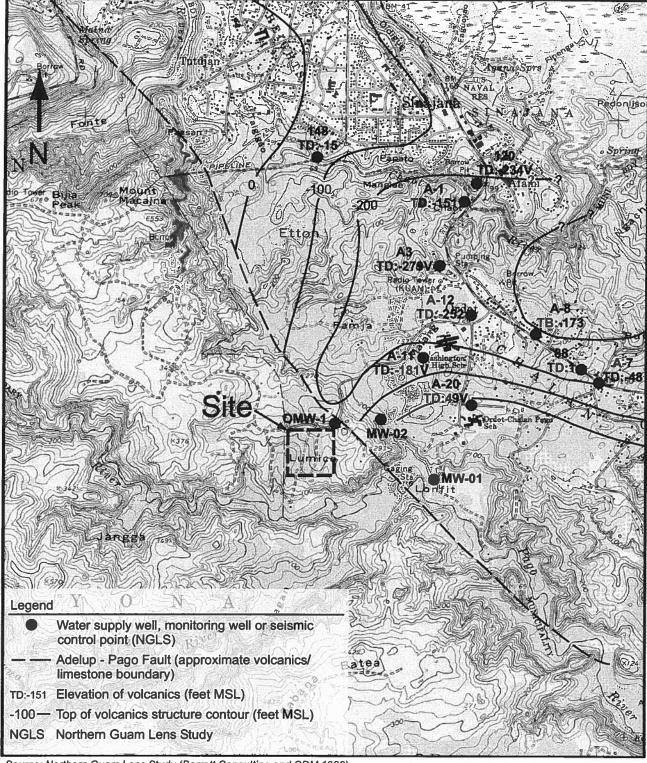
Source: USGS 1975 Agana quadrangle map.

Job No. 33757077

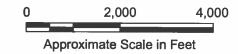
Figure 1
Site Location Map

300

200


Elevation in Feet MSL

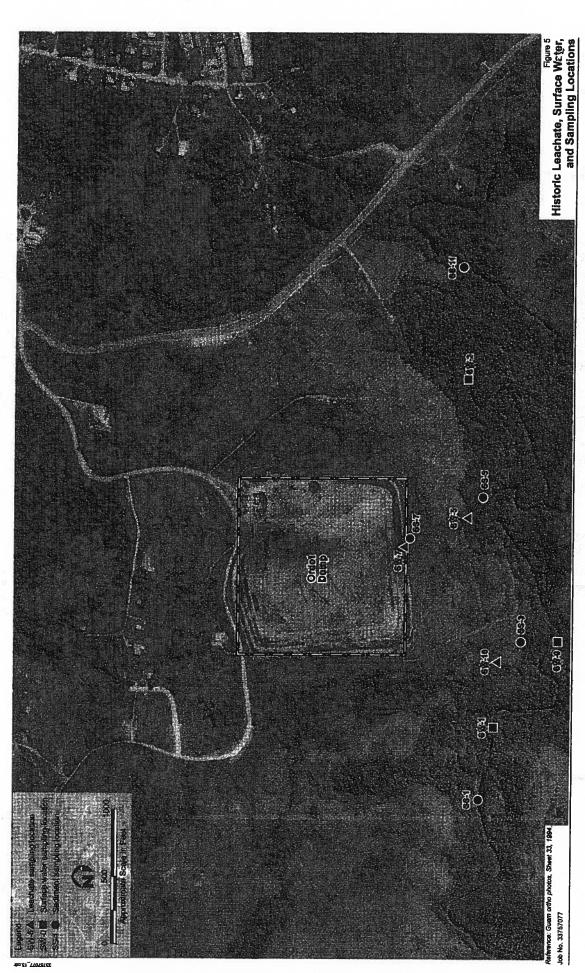
100


Ordot-Chalan Pago, Guam

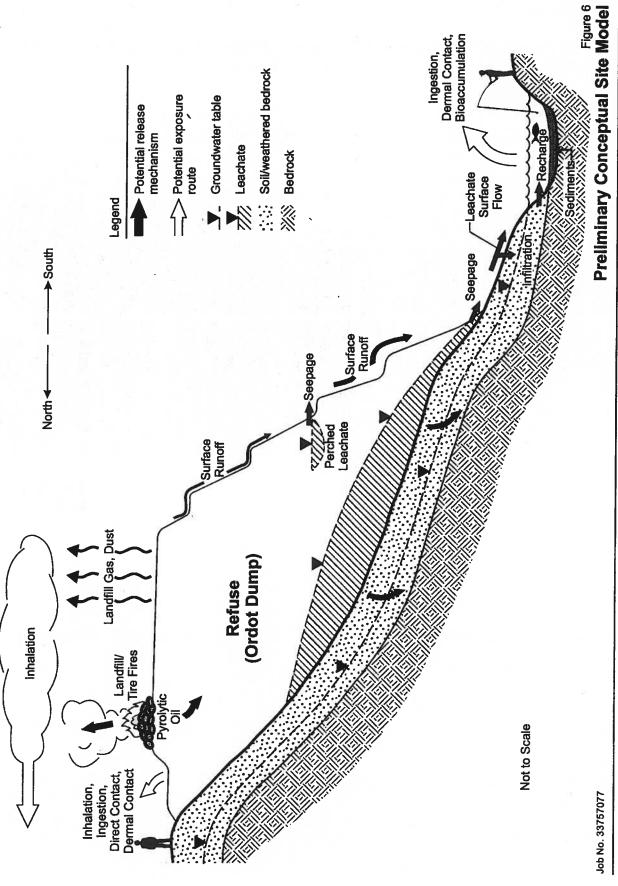
Job No. 33757077

0

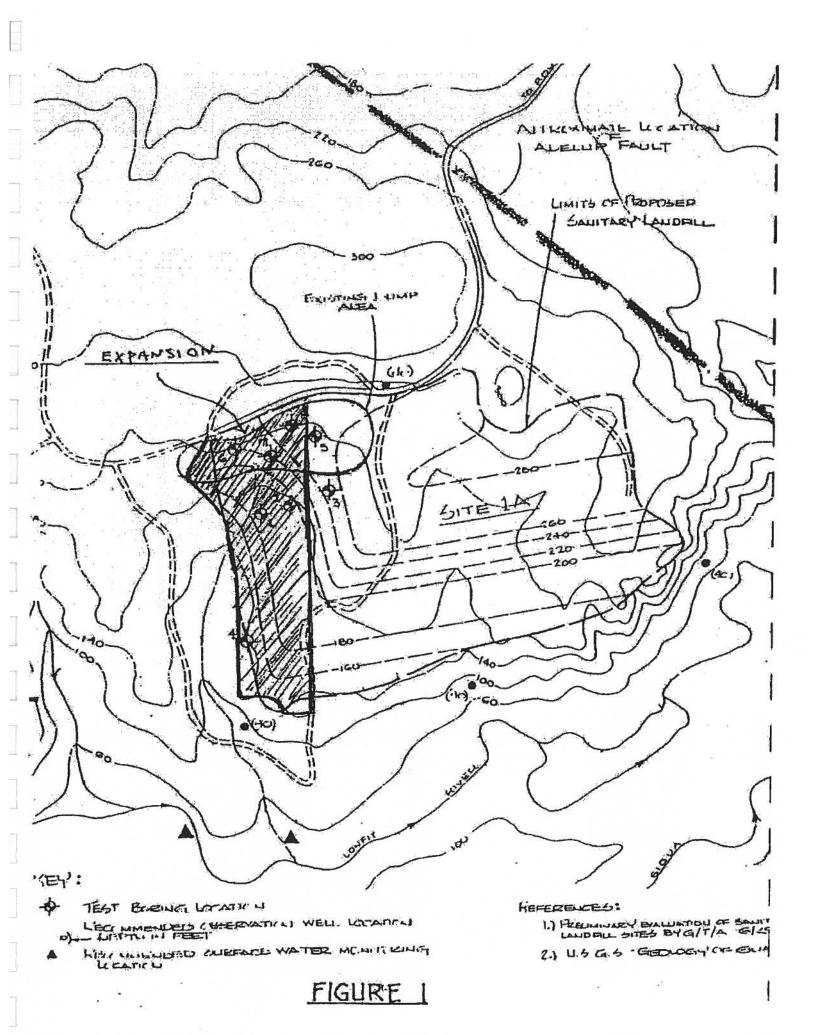
Source: Northern Guam Lens Study (Barrett Consulting and CDM 1982) Base Map: USGS 1975 Agana quadrangle map.

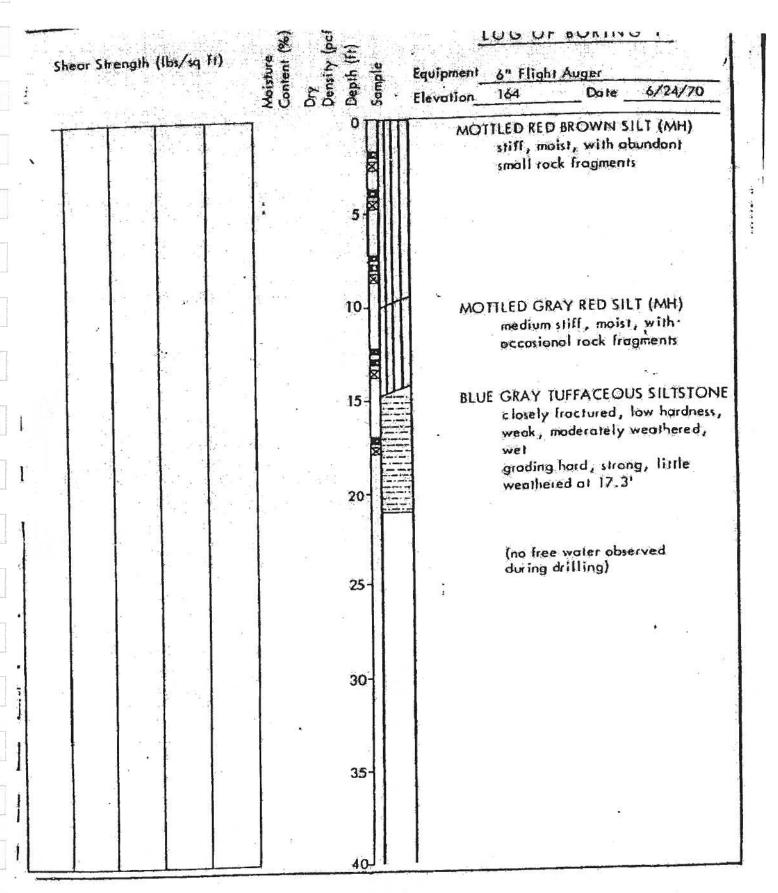


Structure Contour Map on Top of Volcanic Rocks


Job No. 33757077

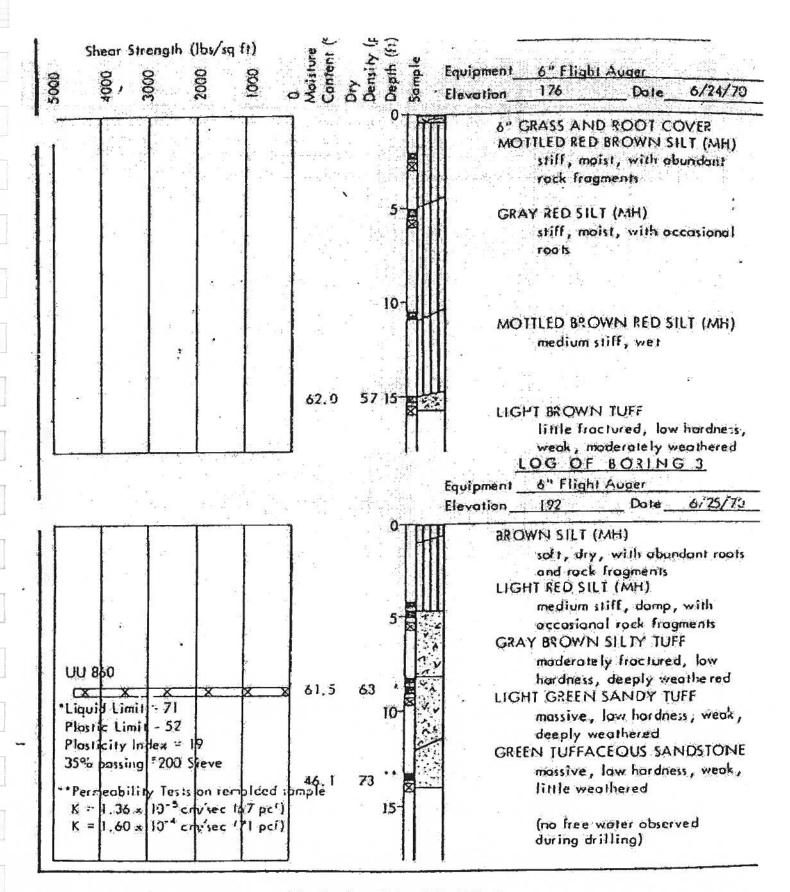
Ordot-Chalan Pago, Guam

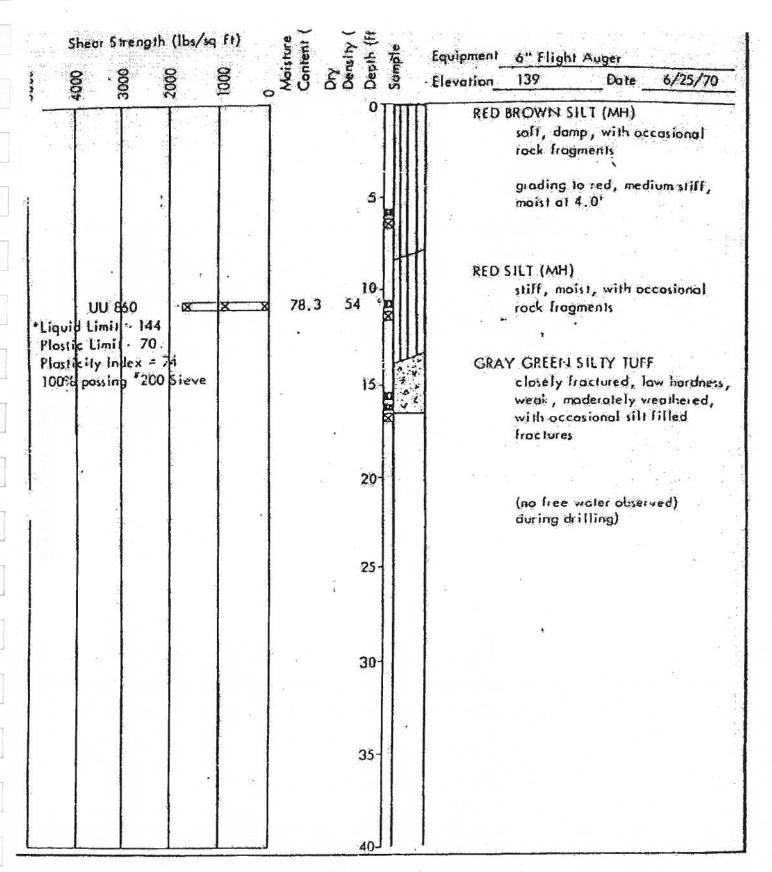

Ordot-Chalan Pago, Guam



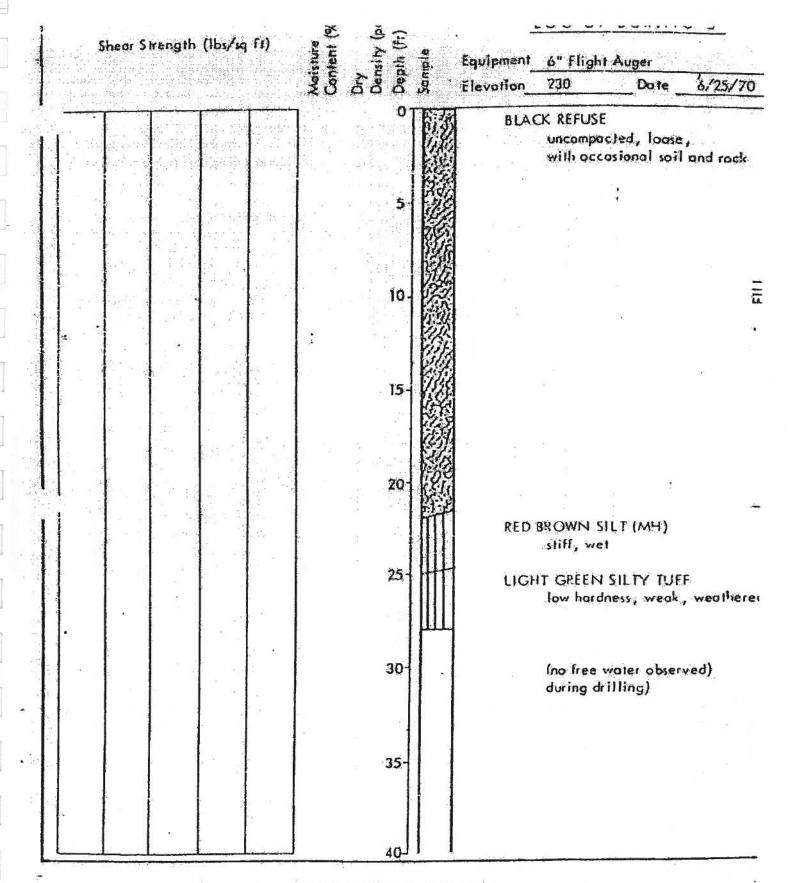
Ordot-Chalan Pago, Guam

APPENDIX A


Boring Logs

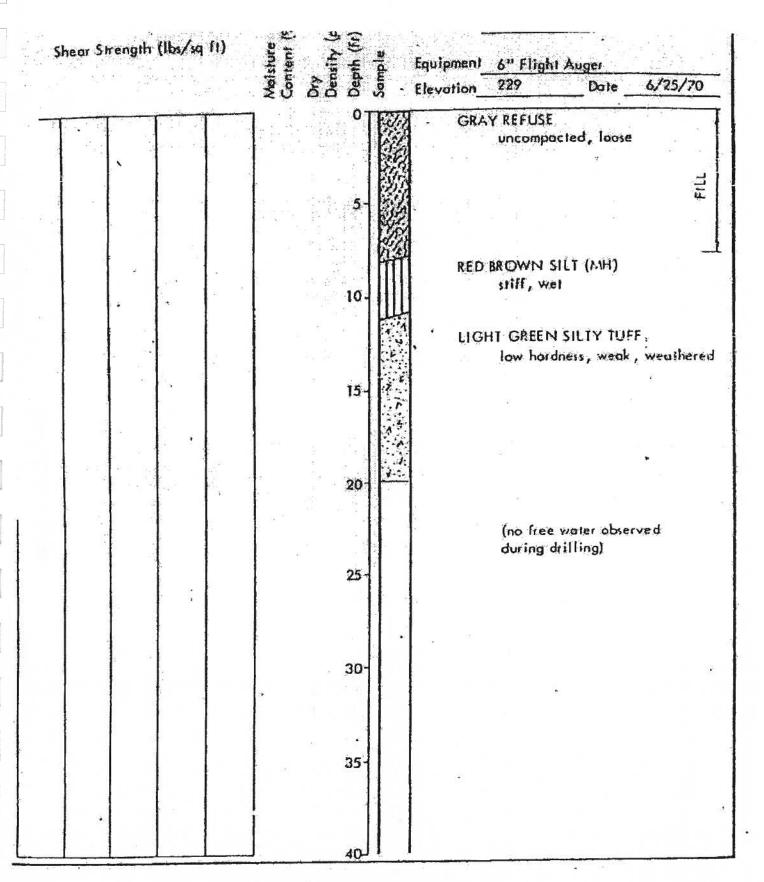

ORDOT DISPOSAL SITE NO. 1 LOG OF BORING NO. 1

FIG, 2

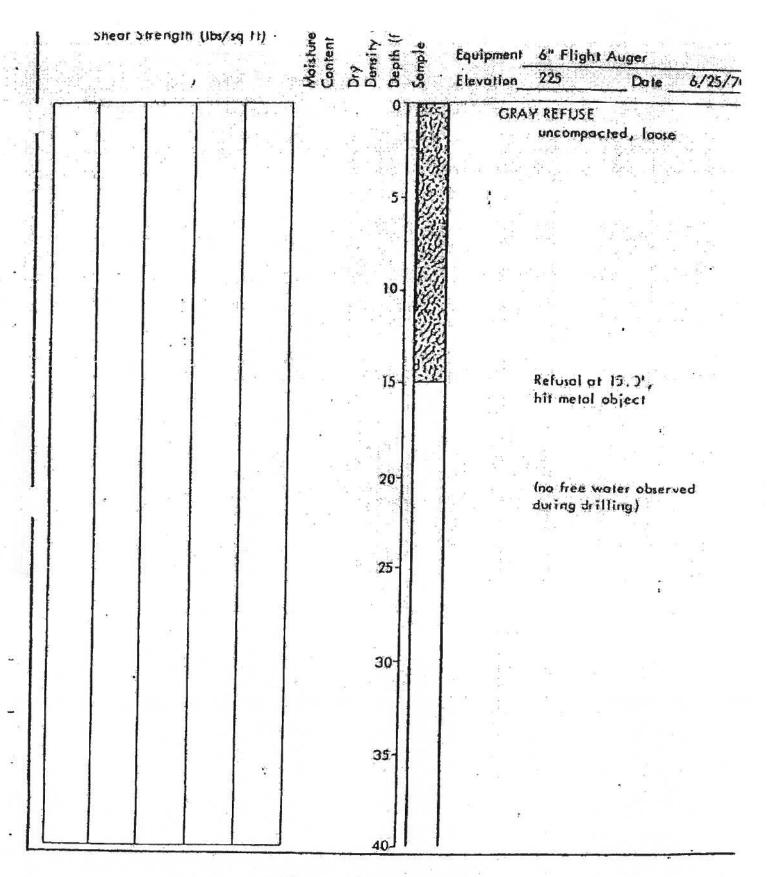


LOG OF BORING NO. 2

FIG. :

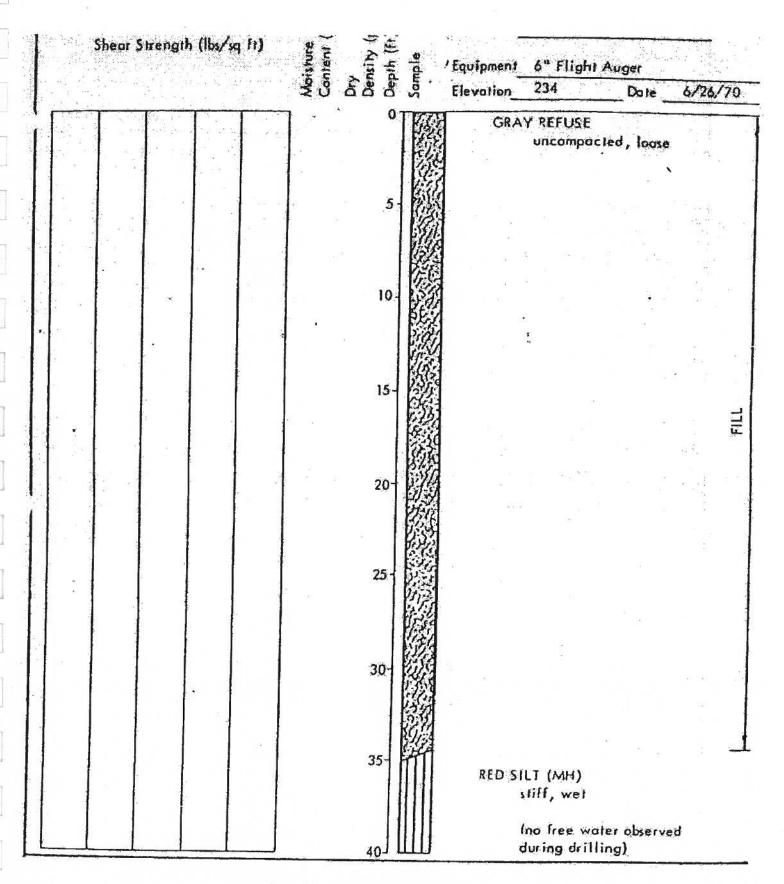


ORDOT DISPOSAL SITE NO. I LOG OF BORING NO. 4



ORDOT DISPOSAL SITE NO. I LOG OF BORING NO. 5

FIG.


ORDOT DISPOSAL SITE NO. 1 LOG OF BORING NO. 6

ORDOT DISPOSAL SITE NO. 1 LOG OF BORING NO. 7

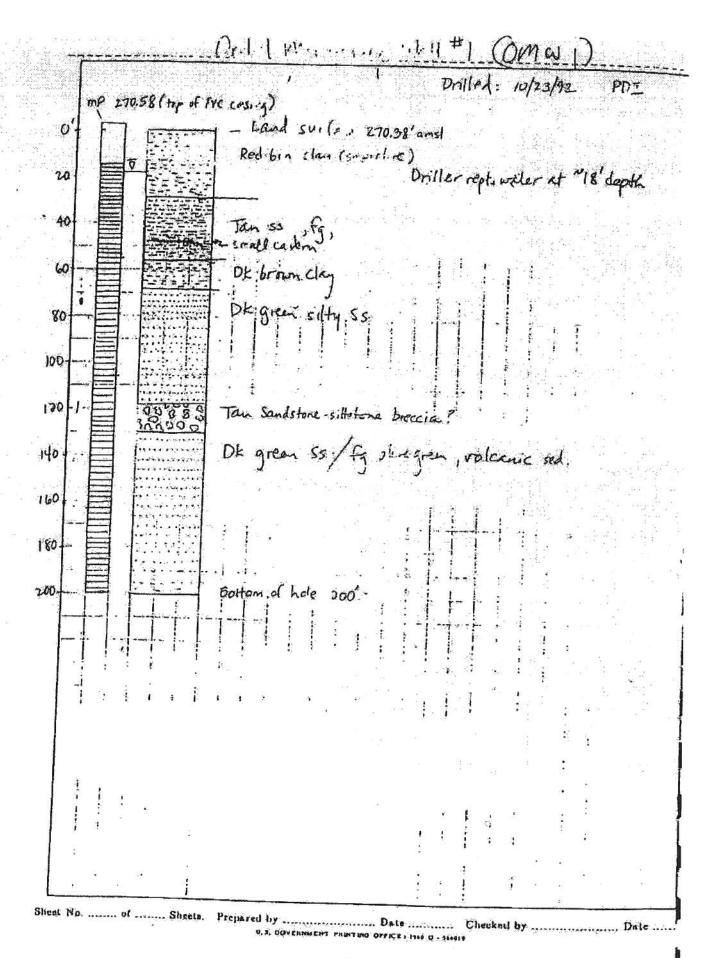
FIG

A-7

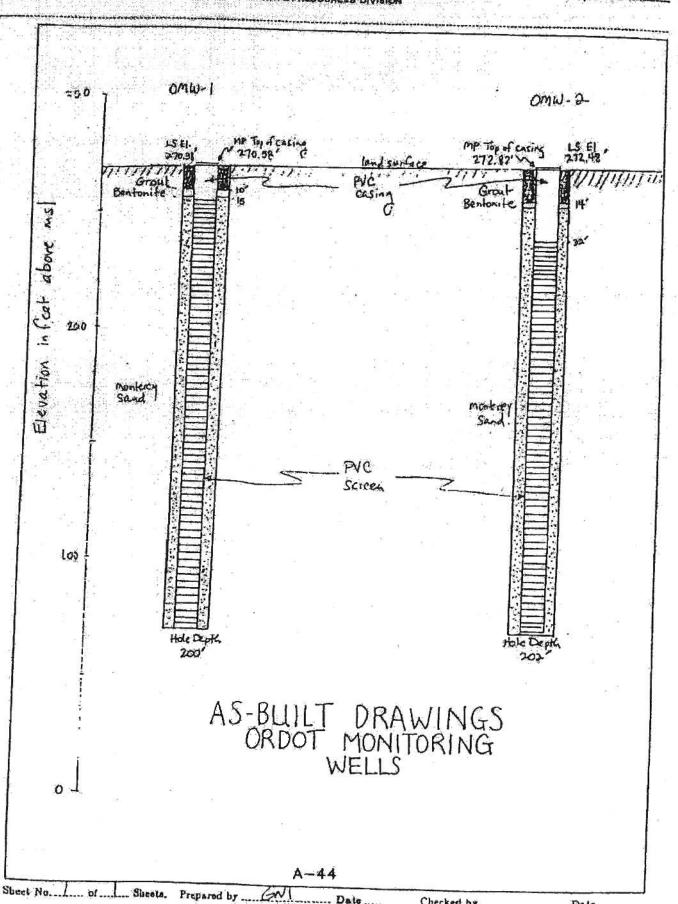
ORDOT DISPOSAL SITE NO. 1 LOG OF BORING NO. 8

4.01	al Depth;	/3.	95/ 3		De	pin of	Groundweier/Time/Date: 33' Prills-/ 1150 107/88/42-
ield lata VAV	Sample	Blow Countre	Opporth	MOII Company	Diagram	Soll Group Symbol (USCS	Surface Description
	ورسيانه ومروسو ويروسوه					4 4	
			o -	The XI - CX	The Reputation of		Dillet 15/4" How (Good Surface - 8/2" BGS); Se 10' 10' 1D STEEL CACING w/ 25x. cmt w/ 10% 200 PER GEPA regulate White EMESTONE Slightly Related White White EMESTONE Slightly Weathered
	<u></u>	185 105 216 327 180	iò -	7.9		3	Buff LS Biosphrite; Buff ; Frish; G
14		211 215 232	20 —	TER	1. O. C.		Elarsmac Biographite: Yellowish Law, Fresh
		25 7 248 284 120	30 -	N. K. C.K.			
agama da dii agamanga asya adalamga ami	. il fan di name ja en yet name di name ye	72.1 37.8 32.7 48.8				**************************************	Lines nue Ary Il neevs Biographite: Yellow. Tas: Men Reddish Brown (Ornod Ow) LS
		378 260 257	40 -			**************************************	Yellowish Tax & Agillacious MATRIX medium redit brown; Fresh, massive, por Yuggy Linestone; Increasi of Yellow w/ decrease in
-4 my -	5	266 180 180 56	- 50 -			**************	LIMECTONE: Biosparodik. TAN MASSIVE
marida lan	b	360 73 42		CAVINIG		,40,	LIMESTONE: Increasing Brown w/oce Intlds dack granish gray and bright bon

Linestone Language Dearwood Description of the state of t		18	13 14 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	76				LABORNE: Yellowin Bowl LABORNE: Yellowin Bowl Lacresian Bowl Lacresian Bowl
Bounds Yellow Brown Yellow Brown Yellow Brown Yellow Brown Joseph Joseph Joseph		18	107. 124. 143. 153. 101. 120. 144. 171. 184. 171. 171. 171.	76 80				LABORNE: Yellowin Bowl LABORNE: Yellowin Bowl Lacresian Bowl Lacresian Bowl
B. 126 76 B. 126 76 163 LABSTENE: Vellowin Brown LABSTENE: Acquilleceus lucrossing Oray Brown LABSTENE: Acquilleceus lucrossing Oray Brown LABSTENE: Scipkt lucrossing Brown LABSTENE: Lucrossing Angilleceus will have Bed In LABSTENE: Lucrossing Rid LABSTENE: Lucrossing Rid LABSTENE: Lucrossing Rid LABSTENE: Lucrossing Brown LABSTENE: Lucrossing Rid LABSTENE: Lucrossing Brown LABSTENE: Lucrossing Rid LABSTENE: Lucrossing Brown LABSTENE		18	107. 124. 143. 153. 101. 120. 144. 171. 184. 171. 171. 171.	76 80				LABRUE: Yellowia B. W. Lacres in France
B. 111.6 10 11.6 11.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.		18	57 124 143 153 170 110 120 171 171 171 171 175					LABSTRAE; Yellowia B. W. Lacricesing Brand
B D26 TO 163 163 LARSTENE: Yellows Brown 170 170 170 170 170 170 170 17		18	126 143 153 153 110 110 120 171 184 171 184 175 175					heresing but to
Livestone Sight Increasing Brown of States Sight Increase in States Argillation of States Sight Increase in States Argillation of States Sight Increase in States Sight Increase Sight Incre		18	143 153 10 110 110 120 171 171 175 175					heresing but to
Livestone Sight Increase In Some Acquilles 10		10	153 87 70 110 184 120 171 180 175 175					heresing but to
Johnson Marine M		10	70 110 184 120 107 171 180 175 175 175			5		1600 - S. W. L. C.
10 10 10 10 10 10 10 10		10	70 110 184 120 107 171 180 175 175 175					
Live Stone Agillace is lumpaint Oranged Increasing White Braspar is Increased Increa		10	184 102 171 184 148 148 175					Linestone: Acgillaceros lucares Ory: Pul
Lipestone Agillacens lucrosing Original larcessing White Brospan de larces and larces and larces are larcest to be presented to 13 to 15 to			184. 126. 107. 171. 189. 175 175					Livestone: Acgillaceres Lucrosity Ory. Ped
Increasing White Brospanish 10 171 1			10.7- 17.1- 18.0 14.0 17.5 15.6	90 -			i	LIANT ROOM
10 111 188 90 Limestone Scipt wires Brown of Comments of 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16			171 180 140 171 151	90 -		a = =	ا ــــــــــــــــــــــــــــــــــــ	I was a start WIN TO TO THE WAY THE THE TANK THE
Limestone Scient Mercary Brown will The state of the sta			180 140 175 756	90 —		es e		The state of the s
LIMESTONE INCRESS PRINTED LIMESTONE INCRESS			135	40 —			net market	
LIMESTONE INCRESS PRINTED LIMESTONE INCRESS			135	- 1		3	منسسينئي.	Limestone Scight Mercain Brown WI
Lime Stand White hard dease, no election of the stand of					, a		Antonia passent d	
LIMESTONE Suight Insurance In Brown Aryllidas 13 1707 LIMESTONE - Winter LIMESTONE - Winter 14 189 15 16 16 114 120 17 18 18 67 136 LIMESTONE Increasing Rule LIMESTONE INCRE				1		й. В	1 3	Lineston with hack, done no city
Linestone Dight Inerese in Brand Aryllian 13 107 Linestone What Linestone What Linestone Maryllian Linestone Maryllian Linestone Increasing Argillacian of Rd Linestone Increasing Rd Linest				D 571			97,	5. Spac H
LIMESTONE - WINTER LIMESTONE - MINITERED WI INCOME THE INCOME LIMESTONE - INCOME THE I	20 a 20 p	A remark many of passing and the remark of	767	100 -	П			A. A.
LIMESTONE - White hard, device, no of or		12125		100	¥6			The state of the s
LIMESTONE - A gill read white Red In 18 17 18 10 LIMESTONE - INCRESS Plans 16 74 130 - LIMESTONE INCRESS Plans 17 18 63 136 - LIMESTONE INCRESS Plans LIMESTONE INCRESS				W		· ·		
LIMESTONE - INCRESS OF LIMESTONE PROPERTY OF CLOSE STATES OF LIMESTONE PROPERTY OF CLOSE STATES OF LIMESTONE PROPERTY OF CLOSES OF LIMESTONE PROPERTY OF CLOSE	11.	_13			}		·	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
LIMESTONE - INCRESSING RA LIMESTONE - White, hard, device, no clar	ng tena ting	application of the co		٠		2	apromposited (i)	CACSTRACTION OF THE PROPERTY O
Linesper - Iniversity Relations of the Linesper - Iniversity Relationship Relations		رود مسوسو ماداد در فعمله الأر	V	110 -				Accillate and Rd
LIMESTONE Thereas & Bruns 17. 18 63 130 Linestone - White, hard, dense, no clor		14	2000		1	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LARESTONE SOU J. An (Balled-up B. +)
LIMESTONE Thereas & Bruns 17. 18 63 130 Linestone - White, hard, dense, no clor		Landah sampanikkanikka	/10.					Lines at - Inevene
LIMESTONE Theres, & Brunn 17. 18 57. 30- Linestone There, hard, dense, no clor	. 446	15	21:	· ·			tiani ente	The state of the s
LIMESTONE Theres, & Brunn 17. 18 57. 30- Linestone There, hard, dense, no clor		استحامده واستأه واست	74					Line Tour - Incress Red
LIMESTONE Theres, & Brunn 17. 18 57. 30 Linestone Theres, device no clor	de grandi Sudi La	/6	135	110-	ן ו		de l'alie	and the second of the second o
LIMESTONE There S. & Brown LIMESTONE There as a Brown Limestone - white, hard, device, no alor	er lynn fran	ere, que se se el elimen		io				the althoughter of the state of the same and a feet angular to the same and
17. 18 57 18 63 Linestone - White, hard, device, no clor		erreranti, ede mederrene,	50,00					the contraction of the contracti
18 63 Bo- Liucstone - White, hard, devis, no clor		17	102 4					LIMESTONE IMENERS & Drawn
Liuce Tone - White hard, devic, to 620			D7	/3 _a _				maka u muurah 15 . a regammanganing aminaksi asamidhan agamaga 200 20 27
		/8		******	ΕÍ		3	Lincola - White hard, derie, no
to the same of the	a d'imperiate de la la ligra persona	وقامناه شدواءمداه مقاواتها كالمراوا	6.5	-				Name to the state of the state
140-			•				.	The second of th
· · · · · · · · · · · · · · · · · · ·		· vere e e	- <u>3,</u> ≤,	-				where a comment of the second
white the same of	. ,	-40-05	1994	140-			s 25 5	the appropriate of the term of the term to the term of the appropriate the appropriate of the appropriate the
	سدد أثر نسد	- Kanada					اجتبيت	Charles of the state of the sta


	ROP	Opphy	Wall		Soil Group Symbol (USCS)	Description Descr
		10-				BET JO' 10' 1B STEEL CASING N/ 10 5x c-t BED BED CLLY LINCOTONE YELLOWISH BODW
		10-				BET JO' 10' 1B STEEL CASING N/ 10 5x c-t BED BED CLLY LINCOTONE YELLOWISH BODW
		10-	STATE OF THE SE			BET JO' 10' 1B STEEL CASING N/ 10 5x c-t BED BED CLLY LINCOTONE YELLOWISH BODW
		/0 -	\$ \$			Ben Brn CLAY LINESTANE YELLOWISH BOOWN
		/o	シンドン・サール	2 210-2		LINESTANE YELLOWISH BOOM
		10-	シングラー・	2015 C		See all the control of the control o
		10-	して ままれる	2.70		See all the control of the control o
		10-	してていまった。	2 70 T 3 70 C 3		Line store in Yellowish Brown well inducate stightly argillaseous, SPARRY
		76-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			slightly avgillascous, SPARRY
		7 s _	4			
		_ 7 s _	4			
		2 s _ _	4			
			1			
	accounts.		1	7 1	- specific constitution	Land the state of
		-	14	V I		
			8	4		Approximation and the state of
	300	4	10	1		Chestone Yellow Br
	211 3	20-	. 18	1		
1	17.	4	3			
3	27.6.	4	8 4	1 1.		
	744		OF	1		LIMESTONE White
	171		1	-	استنتنوا	Annual An
		10-	Q	-		manufatur manufa
	100000000000000000000000000000000000000	-	3	1		71 70 4
	200		2	1		LIMESTONE INC. BY-SL REA
		-		-		
7.1	40	ୃ⊣				LINESTONE WH - IAN
		6-	V		=	to by the second of the second
		+	a	-		Complete the second
	77	\dashv		.	-1717-	The second secon
	3.0	\dashv				
	122	\dashv				LIMESTONE BUFF-TAN (C)
	150 6	9 -		-		TIME DIONE PALL - UNC
	בני	-				and the country of th
5	ESIGN izw/Sch	118 177 132 172 100 218 117 121 171 117 121 171 171 171 171 171	218 177 132 40	118 177 175 175 175 175 175 175 175 175 175	111 177 177 100 218 167 167 177 171 167 171 167 171 171	118 177 170 170 170 170 170 170 170 170 170

A-58


Field Oxfa OVA/ Other	Sample	Rep.	85.3	Well	Soil Group	Surface Description
		132 156 133 189 140 211		3 8	Anthonical Control of the Control of	CMESTONE BUFF
200 200 200 200 200 200 200 200 200 200	②	114 153 200 18	70 -	A & S)		L'MESTRUE LACE White
	₽,	2011	0			Linestone Tan Brush Rep w/ her Aig % Linestone Ins Brush Rep w/ her Aig % Linestone Tan Linestone Tan
	0 1	160" 160" 160" 160"	7	RISCR PIL		Limestade white
ny hy py na a baytan.	2	84 63 11	1	Bush		
	77 72 16. 14. 16.	6. 20 3	65.	30		mesnee her white
	\$1 24 \$5 25 27 178	7 6 13a	100	9	<u></u>	MESTONE BEEF REDICT hies wider Arg 2
- () 250 189 281 189 189 189 189	140-	1 5 5 AND		16	MESTONE TAN MESTONE TAN MESTONE THE RELIEL Bra (140'- 149' BGS)

	. Р	онџ <mark>I:та</mark> ајо	NSTA	LLATI	ЭN		Proj	ect No: 62220.70 Logged By: SIVI JLD Date: 7 /4/92 Reviewed By: JLD GRM Date: 7 /4/92
	Field Dala OYAV Other	Sample	4.50	Oepth	Well	Diagram	Sol Group	Sorface Description July 11: Description
The second second	gan en	-ø-	163	150-				Linespie Whik Microsperite well Induct Linespie - Fet Did
S. 1917 A. S. S. S. S.		D	194 184 360 360 210					LIMESTERS - TO I Driller 15/12
Taylor star	Andreas of the state of the sta	(480. 232 313. 189.	- ויס –	300			LINESTEDE - Incr Reddish hules from Arg
9		<u> </u>	180.	180-	208-			Limes Tools - Tard Limes Tools - Peddie B Ary Mars Limes Tools - Date White B Ary Mars
The second second			240. 275. 312. 327.	300	S K			Limestone - Rusish Br - W An Man
		0	767 360 450 300	-	208		nada adamak di di nada di didikan di di nada di didikan di di di nada di	LIMESTORE - TAJ W/ YELLOW JUST DAS.
•		6	17 1 132 153 125 423	=	t grout t			LIMESTARE - Mr. White
	600 00 0 00.	.,	450 3/3 3%	4 4	20mg		. ,	LIMESTIGE - her Reddire Flow Aty Mary
		<u> </u>	240 240 240	170-				Linesade - Inv. Write - Yellow
		1	171 200 240 257	- - - 230 -	V: 193	V: N. Y.	Aşadhi perik i	LIMESTONE - LY TOW COPY
		e passe y a company and a second	27/ 17/ 276	-	47	U		L'MESTOJE Mer. Pled w/ har Arg Mtox.
			700	1240	-	1_	<u> </u>	

		1 1 15 15		<u></u>		in	Surface Description
		7.0		Well	E	Soil Group Symbol (USCS)	
Field Data	Sample	A OP	Depth	3 €	T C	15 N	
MVO	S Z	8		8	0	N E	Description
Other	antivii n	900		1 10 ; 11	11		The state of the s
<u>[8</u> 0]	أهداية وندو وبدويدوسوس	166	240-				LIMESTONE - By Max severs Radion Close yl
		TIV					LIMESTIONS - AND AND BY IS WILL IS JON WICE YIM
	" (EL)	184				********	Characteristic Control of the Contro
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	dape the same and the same	327					Lincapies Les Write-This
ابروت شالون	2 B	378	250-	5	-		A Secretary of the secr
S	***************************************	-327	y 19 p. S.	11	1		A contain the first of the containing of the con
ر المحور المالية ا	- GD)	22.		2	13		As Abave
سنت سمفات	And the Part of th	713]]	13	,	Well Indurated
j o	(28)	157	1 764	4			White - Lit In SPARRY HARESTONE WELL Indurental
	587	7.5		1 1		<u> </u>	
		41-10-	-	1		Tolk parties	TOTAL DEPTH 263
101 (25)	1 2	- mary Series	-]]	į a		the state of the s
							The state of the s
gill some			4 .	520	10 f		
100			-			-	
نواد					52		and the second s
-							the state of the s
				_		100	The state of the s
			a:5			377	The state of the s
	_		-	7) in a series	mage anners beforderen gerren bereit autengereiten annersten betreiten annersten bereiten annersten bestreiten annersten bestreiten
د استداد					<i>.</i>		Control of the second s
,			44				the same of the sa
			/:	4		727	her for the street of the stre
		Market 14 .		+		Fa	And the second s
			***			1177	the same of the same on the process of the same of the
	Charles of the Control of the Contro						there interesting the state of
inter-	an mile year a manager and argu-					-	The state of the s
				4		-	The state of the s
r -grà	and the delivery			4			to the second se
			-بوند.	7		1 1	to the contraction of the contra
1-						1 [
lenki	رفونسس <u>شینی</u> و آمان <u>ین.</u> محصوری وزنید		Carrier I	10-22	+		The second secon
3700					1		and the control of th
		 ,,	, +:mr	-			
			44-44-	ㅋ		1 1"	(COID)

Ordot Monitoring Wel	1. #2 (OMW 2)
	Drilled: 10/27 28/92 PDI
Q DIA O - Land Surface	
Togodo Breccia, green, tuffacens	
Clay, giny todk blkgen de	
60 Box 20 Bieccia gray mud w/ aliver	of trappy of the proof of the state of the s
Sandstone, red bron to gray green	
10 100 toc Bracia de ane	
100 - Breca infreen	
120 Sandstone Breccia;	
140	
Sitistane, lk great to black	
140	
180 multipa	
200 000 87000	
Battom of hole 202'	
	-1
Sheet No of Sheets. Prepared by Date	Chart at hu
D. S. OGNERNMENT PRINTING OF FICE . 1780 O - 1840	ple

Checked he

Data

DROOT HONITORING WELL INFORMATION

LATITUDE/LONGITUDE HAP. HAP SCALE ELEVATION OF LAND SURFACE DEPTH OF HOLE DIANETER OF HOLE DEPTH OF VELL CASING INTERVAL CASING DIAMETER CASING TYPE SCREENED INTERVAL SCREEN DI AMETER SCREEN TYPE SAND PACK TYPE SAND PACK INTERVAL BENTONITE SEAL INTERVAL CONCRETE SEAL INTERVAL

DATE CONSTRUCTION COMPLETED DRILLER METHOD RIG

WATER LEYEL DATA PUMP TEST DATA

CHW-T CHU-2 132633/1444458 132618/1444503 AGANA GUADRANGLE AGANA QUADRANGLE 1:24000 1:24000 270.38 FT 272.48 ft 200 FT 202 ft 9-7/8 IN 9.7/8 IN 200 FT 202 ft 0-15 FT 9-32 FT A IN A IN THREADED PVC THREADED PVC 15-185 FT 32-202 FT 4 IN 4 1X THREADED PYC THREADED PVC TRHE LONESTAR N'S HONTEREY SAND 12-200 IT 16-202 FT 10-12 FT 14-16 FT 0-10 FT 0-74 FT.

10/23/92 10/29/92 PACTFIC DRILLING THE AIR ROTARY SCHRAMM T-685 DHW ROTA-DRILL COMPRESSOR 1000 CFM P 350 PSI YES YES NO YES

APPENDIX B

Analytical Results for Leachate, Surface Water, Groundwater, and Sediment

Appendix B	Table 1	Historical Leachate Surface Water Analytical Data
Appendix B	Table 1a	Additional Historical Surface Water and Leachate Analytical Data
Appendix B	Table 2	Historical Groundwater Analytical Data
Appendix B	Table 3	Historical Sediment Data
Appendix B	Table 3a	Additional Historical Sediment Analytical Data
		•

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

							-	THE REAL PROPERTY.		
						Sample Ide	Sample Identification and Location	ocation.		
	Analyte	Units	Date	SW-0	SW-1	SW-2	SW-5	SW-7	8:MS	SW-10
						(SW-11)			6 88	(SW-3)
					[PGRL-1]	[PGRL-2]	[PGRL-0]	w79-e-2.2.2	(LFL-3)	
				22	(Site 2)	(Site 3)				/Site 4)
				Confluence of SW-10 and Lonfit River	Lonfit River Upstream		Leachate Stream South	Leschate Pond South	Leachate Stream Southeast	Leachate Stream West
	aluminum	J/Brl	11/10/82		591	<200 (591)	<200	358	2.560	17.4
			3/12/87 f		80	75	466	3.583	:	150
			11/7/97	329	171	1	4,580		ı	1.240
			2/10/98	~100	<100	230	160	ı	ı	130
			3/20/98	320	×100	×100	×100	ı	ı	270
			86/6/6	180	<100	200	110		ı	170
	antimony	₽94	11/10/82	1	рu	2	2	2	P	pu
			3/12/87 #	ł	<20.	620	05°	8	ı	50
			11/7/97	<20.2	<20.2	ı	<20.2	,	1	202
	arsenic	µg/L	10/81		1	ı	0.0154		1	-
			11/10/82	1	2	5	2	19	5	2
			1 84	1	ı	ı	,	1	0.0157	1
8			8/84	ı	1	0.0092	ı	ı	ı	ı
le)			4/85	1	0.106	ı	,	1	ı	1
eM.			3/9/8	ı	3.27	1	2.89	ı	ı	1
			4/21/86	1	5.01	ı	5.98	1	ı	1
			7/23/86	1	2.67	1	3.33	t	1	ı
			9/26/86	1	13.7	1	9.1	1	i	ı
		200	12/22/86	ı	8.03	1	8.3	ı	1	ı
			3/12/87 f	ı	دا 0	9	40	40	ı	٧.
			3/25/87	1	4.47	ı	3.75	ı	1	ı
			6/3/87	1	3.81	ı	4.38	:	1	;
			10/14/87	,	4.88	1	3.61	1	1	ı
			12/9/87	,	3.85	1	3.17	:	;	ı
			11/7/97	02>	02>	e I	م م	l	ı	د <u>7</u> 0
			2/10/98	95	×10	¢10	95	ı	1	~10
			3/20/98	40	6	95	6	1	,	~ 10
			86/6/6	<10	<10	<10	<10		1000	1 0√

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Sample Ide	Sample Identification and Location	.ocation		
	Analyte	Units	Date	0-MS	SW-1	SW-2	SW-5	SW-7	6-MS	SW-10
						(SW-11)				(SW-3)
					[PGRL-1]	[PGRL-2]	[PGRL-0]		[[-1:3]	
					(Site 2)	(Site 3)				(Site 1)
				Confluence of SW-10 and Lonift River	Lonfit River Upstreem	Lonfit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream West
	barium	hg/L	10/81	ı		0.0625	0.4494		,	
			11/10/82	ı	×100	×100	=	240	199	138
			8/83	1	1	ı	ı	ı	0.0625	,
			10/83		0.625	1	ı	1	1	ı
			3/8/86	ı	41.7	ı	52.1	ı	ı	ı
			4/21/86	1	62.5	ı	72.9	ı	ı	ı
			7/23/86	1	45.5	ı	273	ı	ı	,
			9/26/86	1	45.5	ı	227	ı	;	ı
			12/22/86	ı	45.5	ı	227	1	1	ı
			3/12/87 f	ı	S	4	25	307	1	113
			3/25/87	1	87.2	ı	163	ı	ı	1
			6/3/87	:	153	ı	13.9	1	ì	1
			10/14/87	ı	190	ı	17.2	:	ı	1
8			12/9/87	:	207	1	17.2	1	,	1
late			11/7/97	149	7.8 j	ı	132	ı	1	178
W			2/10/98	92	40	22	110	1	,	170
			3/20/98	9	₽	9	3	1	1	270
			86/6/6	8	40	11	140	1	ı	180
	peryllium	<u> </u>	11/10/82	ı	Ą	∜	<5 (11)	\$	\$	\$
			3/12/87	1	40.2	<0.2	0.2	<0.2	ı	<0.2
			11/7/97	<0.2	<0.2	ı	<0.2	2000		<0.2
	poron	101	11/10/82	1	×100	×100	458	4,980	960	1,020
	Cadmium	Ъд-	1/81	ı	0.0133	0.0128				1
			11/10/82	1	2	2	2	p	2	2
			8/83	1	1	ı	1.19	ı	ı	1
			1/84	ı	ı	ı	1	ı	ı	ı
			3/6/86	1	4.39	1	2.63	1	ı	1
			4/21/86	Į	2.27	ı	4.55	ı	1	ı
	11:1		7/23/86	1	1.28	ı	2.56	ı	ŧ	1
			9/26/86		6.41	1	7.69	- 100	ı	ı

Table 1

Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Sample Ide	Sample Identification and Location	Location		
Analyte		Units	Date	0-MS	SW-1	SW-2	SW-5	SW-7	8M-9	SW-10
						(SW-11)				(SW-3)
					[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	
					(Site 2)	(Site 3)				(Site 1)
			137	Confluence of SW-10 and Lonfit River	Lordit River Upstream	Lonfit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream
cadmium (continued)	(pan	Ā	12/22/86	,	8.89		222			
			3/12/87 f	1	4.3	2,6	43	643		47
			3/25/87		47	۱ ا	3.7	}	1 1	?
			6/3/87	1	3.57	ı	4.78		1 1	ı
			10/14/87	,	4.76	1	4.76		: 1	1 1
			12/9/87	ı	2.38	3	3.57	ı	ı	۱ ا
			9/27/90	ı	<0.2	<0.2	1	ı	ŀ	\$ O \$
	242		9/27/90 f	1	<0.2	<0.2	1	1	ı	0 0
	53.04.3		10/25/90	1	<0.2	<0.2	1	;	1	000
			10/25/90 f	1	40.2	<0.2	'	:	1	-05 -05
	300,00		6/8/93	1	40.2	<0.2	,	1	ı	\$0.5 20.5
			6/8/93 f	1	0. 2	40.2	1	1	,	40.2
			6/22/93 f	ı	0.1	ı	,	1	ı	40.1
			7/13/93 †	1	.0 1.0	6.1	1	ı	,	6 .1
- 37.			7/28/93 f	ı	<u>6</u> .0	ı	'	1	ı	60.1
			8/17/93 +	1	<0.2	40.2	ı	1	ı	000
			8/27/93 f	ı	<0.2	1	ı	:	ı	0 0
	-1.25		9/3/93	'	<0.2	ı	1	ı	;	\$0°5
			9/10/93 f	1	<0.2	ı	1	1	,	0.0
			9/17/93	1	1	1	1	ı	,	¢0.1
			9/17/93 1	1	6.	BU	ı	1	1	0.0
			9/24/93	1	6.	ı	ı	;	ı	0.0
			9/24/93 f	1	6.1	1	ı	ı	1	6.1
		£	10/1/93	ı	40.2	:	1	1	ł	<0.5 0.2 0.2
			10/1/93 f	ı	<0.2	ı	ı	1	ı	<0.5
			10/8/93	1	1	ı	ı	1	ı	<0.2
			10/8/93 +	1	40.2 0.2	:	1	ı	ı	<0.2
			10/15/93 †	,	0 5	ı	1	ı	ı	<0.2
			12/2/93	1	<0.2	0. 2	ı	ı	ı	0.5
			12/2/93 f	ī	<0.2	0.2	ı	1	,	000

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Sample Ide	Sample Identification and Location	Location		
	Analyte	Units	Date	0-MS	SW-1	SW-2	SW-5	2-MS	8W-9	SW-10
						(SW-11)				(SW-3)
					(PGRL-1)	[PGRL-2]	[PGRL-0]		[LFL-3]	
					(Site 2)	(Site 3)				(Site 1)
				Confluence of SW-10 and Lordit River	Lonfit River Upstream	Loraft River Downstream	Leachate Stream South	Leachate Pond South	Leachste Stream Southeast	Leachate Stream West
	cadmium (continued)	hg/L	6/6/94		~0.1	\$0.1	,		1	6
			11/7/97	<1.3	4.3	ı	۲.3 در	ı	1	<u>۲</u>
			2/10/98	⊽	₹	₹	⊽	ı	1	₹
			3/20/98	⊽	⊽	₹	⊽	ı	,	⊽
			9/3/38		₹	₹	₹	1	1	V
	calclum	µg/L	3/12/87 f	1	42,150	42,720	66,200	85,870		103,700
			11/7/97	78,800	41,000	ı	62,100	1	ı	94,800
			2/10/98	80,000	42,000	55,000	67,000	1	1	77,000
	20,000		3/20/98	120,000	44,000	48,000	73,000	ı	1	100,000
			8/6/6	87,000	35,000	38,000	7,100	1		110,000
	chromium (total)	hg/L	08/9		1	0.0083	-		1	
			11/10/82	ı	2	P	2	P	Ş	2
			8/83	1	ı	ı	0.092	1	1	1
8			11/83	ı	0.06427	1	ı	ŧ	ı	ı
B)			10/84	:	ı	ı	ı	1	0.013	,
oM	9.77		3/6/86	1	5.56	ı	27.8	ı	ı	,
			4/21/86	1	4.76	ı	4.76	ı	ı	١
			7/23/86	1	4.17	:	4.17	1	ı	,
			9/56/86	ı	8.33	,	8.33	1	1	1
			12/22/86	ı	9.52	:	4.76	1	1	1
			3/12/87 †	1	43.7	43.7	4.7	=	1	43.7
			3/25/87	ı	5.56	1	5.56	ı	1	1
			6/3/87	ı	7.14	ı	7.14	ı	1	ı
			10/14/87	,	9.52	1	4.76	1	ı	1
8			12/9/87	1	9.52	ı	4.76	ı	1	ı
			9/27/90	1	0.5	6.0	ı	ı	ı	2.3
			9/27/90 f	ı	6.0	<0.3	ı	ı	ı	1.9
		.4	10/25/90	ı	6.3	<0.3	1	ı	ı	1.9
			10/25/90 f	1	6.0	<0.3	ı	ı	ı	ı;
			6/8/93	A CONTRACTOR OF THE PERSON OF	0.3	<0.3		ı	1	12

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

SW-0 SW-11 PGRL-1] PGRL-2 SW-5 SW-11 PGRL-0 PGRL-0							Sample tde	Sample Identification and Location	-ocation		
Confidence of SW-10 CRRL-1 CR		Analyte	Units	Date	0-MS	SW-1	SW-2	SW-5	SW-7	6-MS	SW-10
Confidence of SW-10							(SW-11)		3		(SW-3)
Confinence of State						[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	
Chromitum (total) μg/L 6/12/93 f Loriti River Lorit River Lo						(Site 2)	(Site 3)				(Site 1)
Continued					Confluence of SW-10 and Lordit River	Lorift River Upstream	Lonfit River Downstream	Leachata Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream West
(continued) 6/22/93 f - 40.3 7/13/93 f - 40.3 - 40.3 - 7/13/93 f - 7/13/9		chromium (total)	ηβ/L	6/8/93 f	1	6.3	<0.3		-	,	12
7/13/93 7/13		(continued)		6/22/93 f	1	<0.3	1	ı	ı	ı	22
847783 f 40,3 80,3 80,3				7/13/93 f	1	<0.3	<0.3	1	ı	ı	9
Warth Wart				7/28/93 f	ı	€0.3	ı	ı	ı	1	27
8427/83 f <-0.3 < < < < < < < < <				8/17/93 f	1	€.0	<0.3	,	ı	ı	13
9/10/83 f <-0.3 <- < < < < < < < <				8/27/93 f	1	€.0	1	1	1	ı	2
99/17/93 f 40,3				9/3/93 ←	,	6,3	1	1	1	ı	18
94/7/93 f				9/10/93 f	ı	€.0	ı	1	ı	ı	4.2
992493 f 60.3				9/17/93	ı	ı	1	1	1	ı	2.4
9124/93				9/17/93 f	ı	<0.3	<0.3	ı	1	ı	75
9/24/83 f				9/24/93	ł	Ē	1	ı	ı	,	2.6
10/183 1 1 1 1 1 1 1 1 1				9/24/93 f	1	9.0	ı	1	ı	,	7
10/1/83 f				10/1/93	,	1.8	ı	1	1	,	
10/8/83	9			10/1/93 f	ı	6.0	1	ı	1	,	6
10/18/93 f	le3			10/8/93	ı	:	ı	1	ı	ı	3,8
10/15/93 f <0.3	M			10/8/93 f	ı	€.0	1	ı	1	ı	1.4
12/2/93				10/15/93 f	1	€ 0.3	1	ı	:	ı	10
12/2/93 f				12/2/93	1	€.0	<0.3	ı	ı	ı	7
11/7/87				12/2/93 f	ı	6.3	6.3	:	ı	ı	4.
117787				6/6/94	1	60.3	<0.3	1	1	1	2.1
2/10/28 < <10 <10 <10 <10 <10 <10 <10 <10 <10 <				11/7/97	√.'>	۲.۲	1	8.2	:	ı	3.1
3/20/98 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10				2/10/98	₽	운	د 10	- - -	ı	ı	9
11/10/82				3/20/98	₽	₽	ح10	- 0₽	ı	1	V-10
μg/L 11/10/82 — ref. 8 cf. 8 cf. 8 cf. 8 11/1787 4.8 c2.1 — 5 μg/L 11/1/82 — 84 c50 (69) c50 μg/L 11/1/182 — 84 c50 (69) c50 μg/L 11/1/187 — 65.9 10				86/6/6	در 0	40	<10	<10			۷5
3/12/87 f — <6.8 <6.8 <6.8 11/1/87 4.8 <2.1 — 6 11/1/82 — 84 <50 (69) <50 20		cobalt	hg/L	11/10/82		Pu	pu	ы	2	ри	힏
19/L 11/182 - 84 <50 (69) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50 (90) <50				3/12/87 f	ı	8.9	6.8	€6.8	5	:	6.8
µg/L 11/1/82 — 84 <50 (69) <50 3/12/87 f — 5.9 <5.9 10			i)	11/7/97	4.8	42.1	1	10	-	ı	4
5.9 <5.9 10		cobber	Pg/	11/1/82	1	2	<50 (69)	<50	159	88	101
				3/12/87 f		6 .9	<5.9	2	3	1	<5.9
1,50 L	-			9/27/90 u		8.0	1,5	1	:	1	8.83

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Sample Ide	Sample Identification and Location	ocation		
	Analyte	Units	Date	0-MS	SW-1	SW-2	SW-5	SW-7	8-MS	SW-10
				11126	200	(LL-MS)	i		1	(SW-3)
					- Tage	[FGRL-Z]	PGRL-0]		[F-1-3	
				Confluence of SWL10	(Site 2)	(Site 3)	O statement	1		(Site 1)
				and Lordit River	Upstream	Downstream	South	South	Southeast	Leachate Stream West
	copper (continued)	ηδ/L	9/1/90 ₹	1	6.0	9.0	-		1	2.1
			10/25/90	ı	6.0	-	ı	ı	ı	6.7
			10/25/90 f	ı	40	4.0	ı	;	ı	6.4
			6/8/93	ı	•	-	1	1	1	2.5
			6/8/93 f	ı	-	-	,	ı	ı	2.6
			6/22/93 +	ı	4	ı	,	l	1	2.2
			7/13/93 f	ı	97	4.0	1	1	ı	2,4
			7/28/93 †	ı	0.4	1	1	ı	ı	m
			8/17/93 f	ı	0.3	0.3	,	ı	ı	2
			8/27/93 f	ı	0.3	ı	ı	ı	ı	30.8
			9/3/93 1	ı	0.3	1	1	;	ı	30
			9/10/93 f	ı	6.0	ı	ı	ı	1	21.2
			9/17/93	ı	1	ı	ı	,	1	13.5
8		8-11-67	9/17/93 f	ı	-	82	ı	ı	ı	12
late			9/24/93	:	4	ı	ı	1	ı	18.4
M			9/24/93 f	1	1.7	1	ı	ı	1	6.2
			10/1/93	1	1.7	1	ı	1	1	36
			10/1/93 f	;	7	ı	ı	ı	1	8.5
			10/8/93	ı	ı	ı	:	1	1	17.1
			10/8/93 +		8.0	ı	1	1	ı	6.1
			10/15/93 +	ı	0.8	1	:	1	ı	4.6
			12/2/93	1	<0.3	€.03	,	ı	ı	2.6
			12/2/93 f	:	€0.3	6.3	;	ı	ı	2.1
			6/6/94 +	1	7	8	1	ı	ı	1.7
			11/7/97	13.1	<4.5	1	10.5	t	1	12
	iron	Pg4	11/10/82	:	1,030	258	629	099'6	6,360	1,470
			3/12/87 f	ı	106	223	639	39,260	ı	243
	n		9/27/90	ı	200	266	ı	1	ı	2,056
			9/27/90 1	ı	14.5	17.3	ı	ı	1	52.3
-			10/25/90	:	43.5	21.3	-	1	1	1,222

Table 1

Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Sample Ide	Sample Identification and Location	ocation		
Analyte		Units	Date	0-MS	SW-1	SW-2	SW-5	SW-7	8-MS	SW-10
						(SW-11)				(SW-3)
					[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	•
					(Site 2)	(Site 3)				{Site 1}
			539	Confluence of SW-10 and Lordit River	Lorift River Upstream	Lorriit River Downstream	Leachate Stream South	Leschate Pond South	Leachate Stream Southeast	Leachate Stream West
Iron (continued)	(penu	T/Grt	10/25/90 f	ŀ	4.5	4.7	1	[.	ľ	23.8
			6/8/93	1	11.3	107	ı	1	:	104
W			6/8/93 +	ı	6.4	26.6	ı	2 1	1	F9 4
OW.			6/22/93 f	ı	LO.	ı	,	ı	1	88.8
200			7/13/93 f	ı	-	12.4	1	ı	1	2
			7/28/93 f	,	-	ı	,	ı	:	12
			8/17/93 f	ı	8,8	14.4	1	ı	1	106
			8/27/93 1	1	£.	ı	1	1	1	154
			9/3/93 +	ı	9.5	:	,	ı	1	83.1
	#		9/10/93 f	1	10.9	ı	ı	Ę	ı	141
			9/17/93	,	1	ı	ı	. 1	ı	149
			9/17/93 f	,	10.1	na	ı	1	1	51.7
			9/24/93	ı	1,024	1	1	ı	ı	169
			9/24/93 f		ន	ı	1	ı	ı	53.6
slat			10/1/93	ı	1,858	1	1	1	ı	838
eM			10/1/93 f	1	æ	1	1	ı	ı	22
			10/8/93	ı	ı	1	ı	1	ı	4,713
			10/8/93 f	1	8	ı	1	1	ı	646
			10/15/93 f	i	16.4	1	ı	ı	1	254
_			12/2/93	1	154	163	1	ı	ı	1.625
			12/2/93 f	ı	14.7	33.3	ı	ı	1	122
			6/6/94 f	ı	\$	22.8	1	:	I	160
			11/7/97	1,190	189	ı	4,680	ı	1	3,330
			2/10/98	1,200	₹ 100	1,100	220	ı	ı	4,100
			3/20/98	2,500	×100	2 00	218 218	ı	1	14.000
7.54		0.2	86/6/6	360	140	240	170	1	ı	530
pead		rg/L	10/81		0.0326	1		1	1	,
			1/83	ı	1	0.0815	0.0463	ı	1	ı
			11/10/82	ı	ŝ	<5 (8)	\$	75	9	₩
1000000			4/84	-	ı	ŧ	1	1	0.0287	:

Table 1

Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Sample Ide	Sample Identification and Location	ocation.		
	Analyte	Units	Date	0-MS	SW-1	SW-2	SW-5	SW-7	8-MS	SW-10
						(SW-11)				(SW-3)
					[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	9080
					(Site 2)	(Site 3)				(Site 1)
				Confluence of SW-10 and Lonfit River	Lonfit River Upstream	Lordit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream West
	lead (continued)	иg/L	3/6/86	1	83.3	1	75	,	1	
			4/21/86	ı	19	ı	66.7	ı	1	ı
			7/23/86	ı	33.3	1	26.7	ı	1	ı
			9/26/86	1	33.3	ı	33.3	1	ı	1
			12/22/86	ı	75	1	84	1	1	1
			3/12/87 f		٧	\$	\$	8	ł	5.3
_	8		3/25/87	1	6.67	1	6.67	ı	1	1
			6/3/87	ı	7.4	1	7.4	1	1	1
			10/14/87	1	77	1	33.3	ı	1	ı
			12/9/87	1	33.3	1	22.2	ı	ı	ı
			9/27/90	ı	0.7	0,3	1	1	ı	2.1
			9/27/90 1	1	•	<0.3	;	1	1	3.1
			10/25/90	ı	0.7	6.0	ı	1	ı	2.1
5			10/25/90 f	1	-	<0.3	1	1	ı	6,3
ila):			6/8/93	ı	9.0	9.0>	ı	ı	ı	~0.6
PW			6/8/93 +	ı	9.0	9.0>	,	;	I	<0.6
			6/22/93 +	ı	9.0	ţ	ı	ı	1	900>
			7/13/93 f		<0.5	<0.5	1	ı	1	<0.5
			7/28/93 1	ı	<0.5	1	ı	ı	ı	<0.5
			8/17/93 f	1	Q.3	<0.3	ı	ı	ı	<0.3
			8/27/93 f	1	<0.3	ı	1	ı	ı	€0.3
			9/3/93 f	ı	<0.3	ı	ı	1	1	€0.3
			9/10/93 f	1	€.03	ı	ı	ı	ŀ	0.3
			9/17/93	1	1	1	ı	ı	I	~0.6
			9/17/93 f	ı	9.0>	22	1	ı	ı	~0.6
			9/24/93	ı	9.0	ı	ı	ı	ı	9.0>
			9/24/93 f	;	9.0	ı	ı	ı	ı	9.0>
		-416-	10/1/93	,	8.4	,	ı	ı	ı	3.4
			10/1/93 f	1	0.3	ı	ı	1	1	€0.3
		0	10/8/93	ı	1	-	-	ı	Contract of the Contract of th	

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

					Sample Ide	Sample Identification and Location	ocation -		
Analyte	Cuits	Date	0-MS	SW-1	SW-2	SW-5	SW-7	8-MS	SW-10
					(SW-11)				(SW-3)
				[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	
				(Site 2)	(Site 3)				(Site 1)
			Confluence of SW-10 and Lonfit River	Lonfit River Upstream	Lonfit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream West
lead (continued)	μg/L	10/8/93 f		<0.3	1			1	8
		10/15/93	. 1	<0.3	ı	ı	ı	1	5 6
		12/2/93	1	<0.6	900	1	ı		5 6
		12/2/93 f	ı	<0.6	9.0	,	ı	1	9, 6
		6/6/94 f	ı	9.0≻	9°0>	ı	ı	ı	4
_		11/7/97	-	<0.5	1	5.6	:	1	14
	***	2/10/98	₩	\$	\$	\$	t	1	8
		3/20/98	13	9,5	∜	7.9	1	ı	ی ر
		9/3/38	\$	\$	8	\$			٧
magnesium	hg/L	3/12/87 f	1	8,745	9,210	54,290	60,290		23.580
	2011	11/7/97	22,500	8,430	ı	44,300	1	ı	24,200
		2/10/98	25,000	9,300	11,000	28,000	ı	ı	20,000
		3/20/98	32,000	000'6	11,000	64,000	ı	1	28,000
		86/6/6	19,000	7,000	8,200	61,000	1	1	25,000
manganese	ng/L	11/10/82	ı	38	24	636	772	1,280	804
914	9.00	3/12/87 f	1	20	10	142	3,161	. 1	224
	-	9/27/90	ı	28.1	60.2	,	1	ı	364
		9/27/90 1	ı	12.6	\$	ı	ı	1	337
		10/25/90	ı	28.3	33.9	1	ı	1	766
		10/25/90 f	1	20.8	25.4	,	ı	1	996
		6/8/93	ı	44.2	67.4	,	ļ	ı	100
2		6/8/93 f	ı	36.1	52.3	1	ı	ı	100
		6/22/93 1	,	41.7	1	,	1	ı	307
		7/13/93 1	1	8,3	83	1	1	ı	524
		7/28/93 f	ı	£	1	ı	ı	ı	306
		8/17/93 f	ï	16.4	16.9	ı	ı	ı	202
		8/27/93 f	:	85.4	1	,	ı	1	159
		9/3/93	ı	30.3	ı	,	ı	,	167
		9/10/93 1	1	33.6	ı	1	ı	ı	83.4
		9/17/93		-	ı	1	:	1	101

Table 1

Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Sample ide	Sample identification and Location	Location		
	Analyte	Units	Date	SW-0	SW-1	SW-2	SW-5	SW-7	SW.o	SW.40
						(SW-11)				(SW-3)
	*1				[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	23-3
					(Site 2)	{Site 3}				{Site 1}
				Confluence of SW-10 and Lonfit River	Lonfit River Upstream	Lordit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream West
	manganese (continued)	J/Gr	9/17/93 f	1	6.1	82		1		83.3
			9/24/93	,	2	ı	1	1		184
			9/24/93 f	1	122	ł	1	1	: !	87.3
			10/1/93	ı	25	1	,	ı	. 1	220
			10/1/93 f	,	12	ı	1	ı	ı	15.
			10/8/93	ı	;	1		1	ı	1113
			10/8/93 f	t	12.5	ı	,		ı	915
_			10/15/93	1	10.8	1	,	1	ı	583
			12/2/93	ı	6	33.2	,	,	1	832
			12/2/93 f	1	3.8	17.4	1	ı	ı	733
			6/6/94 f	1		22.8	1	ŀ	,	795
			11/7/97	302	9.6	ı	283	1	ı	25.8
			2/10/98	280	52	880	8	ı	1	520
•			3/20/98	1,100	29	83	48	1	;	099
alest			9/9/98	240	16	ន	88	1	;	140
	mercury	hg/L	11/10/82	-	11	6.2	3.4	32.8	7.1	2.9
			1/83	ı	1	0.0018	ı	1	:	1
			8/83	1	0.0105	ı	0.014	1	0.0208	1
	01 #1		3/6/86	1	0.22	ı	0.467	ı	,	1
			4/21/86	1	0.824	ı	1.13	ı	1	ı
			7/23/86	1	1.107	ı	0.756	ı	1	1
			9/26/86	1	0.915	ı	0.976	1	,	1
			12/22/86	ı	0.45	ı	0.5	1	ŧ	:
			3/12/87 1	ı	<0.2	<0.2	<0.2	<0.2	ı	<0.2
			3/25/87	ı	0.45	ı	0.82	1	ı	1
			6/3/87	ı	0.51	1	0.306	ı	ı	ŧ
			10/14/87	ı	0.625	:	4.0	1	1	;
			12/9/87	ı	0.774	ı	1.012	ı	1	ı
			9/27/90	ı	<0.3	<0.3	1	ı	1	<0.3
			9/27/90 f	ı	~0.3	<0,3		ı		5

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

i						Sample Ide	Sample Identification and Location	ocation		
•	Analyte	Units	Date	0-MS	I-MS	Z-MS	SW-5	SW-7	6-MS	SW-10
						(SW-11)	,			(SW-3)
					[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	
		54			(Site 2)	(Site 3)				{Site 1}
				Confluence of SW-10 and Lonfit River	Londit River Upstream	Lonfit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream West
_	mercury (continued)	hg√L	10/25/90	;	<0.3	<0.3			1	8
			10/25/90 f	1	<0.3	<0.3	1	ı	1	<0.3
			6/8/93	1	2	מַ	ı	ı	1	2
			6/8/93 f	1	2	2	ı	ı	ı	2
			6/22/93 f		2	ı	ı	,	1	2
			7/13/93 f	1	2	힏	ı	ı	1	5
			7/28/93 f	ı	됟	ı	,	ı	ı	2
			8/17/93 f	:	5	힏	,	ı	1	Þ
			8/27/93 f	1	잗	ı	1	1	,	2
			9/3/93 f	ı	рu	1	ı	ı	1	2
			9/10/93 f	ı	2	ı	ı	ı	t	5
			9/17/93	1	ı	ı	ı	ı	1	2
			9/17/93 f	ı	2	2	,	ı	ı	2
818			9/24/93	ı	5	ı	1	ı	ı	ē
teh			9/24/93 f	ı	5	1	ı	ı	,	2
1			10/1/93	ı	ጀ	ı	ı	ı	1	2
			10/1/93	ı	2	1	1	1	ı	5
			10/8/93	ı	;	1	1	,	ı	멑
			10/8/93 f	ı	5		1	ı	1	2
			10/15/93	ı	돧	1	1	ı	ı	5
			12/2/93	1	겉	P	,	:	ı	5
			12/2/93 f	ı	2	힏	1	ı	1	2
1			6/6/94	1	멑	pu	1000		-	2
=	nickel	Pg4	11/10/82	1	3	51	(46)	4	4	2
			3/12/87 †	1	8	<23	83	83	ı	8
-22-			9/27/90	1	9.0>	~ 0.6	ı	1	ı	8.9
			9/27/90 f	ı	9.0≻	~0.6	ı	ı	ı	4.6
			10/25/90	ı	9.0	~0.6	1	1	1	60
-			10/25/90 f	1	<0.6	9.0	1	,	ı	2.7

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

					Sample Ide	Sample Identification and Location	-ocation		
Analyte	Units	Date	SW-0	SW-1	SW-2	SW-5	SW-7	6-MS	SW-10
					(SW-11)				(SW-3)
				[PGRL-1]	[PGRL-2]	[PGRL-0]		[[FL-3]	
		de Utauri		(Site 2)	(Site 3)			1	{Site 1}
		we in	Confluence of SW-10 and Lonfit River	Lonfit River Upstream	Lonfit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream West
nickel (continued)	hg/L	6/8/93	,	<0.6	<0.6	,			19.5
		6/8/93 f	1	~0.6	900	ı	ı	1	17.5
		6/22/93 f	ı	9.0≻	ı	ı	1	ı	11.5
	-11-	7/13/93 f	ı	40.6	<0.6	ı	ı	1	2
		7/28/93 f	ı	9.0>	1	1	ı	ł	18.7
		8/17/93 f	1	8.0	60.8	ı	ı	ı	10.8
		8/27/93 f	,	<0.8	ı	1	ı	ı	7.22
		9/3/93 1	ı	×0.8	1	ı	1	ı	17.4
		9/10/93 f	1	40.8	1	ı	1	1	22.1
		9/17/93	1	ı	ı	ı	1	ı	21.4
		9/17/93 1	ı	<0.8	0.8	1	1	ı	20.3
-		9/24/93	ı	&0.8	1	ı	1	1	3.3
		9/24/93 f	ı	40°8	ı	;	ı	ı	3.3
•		10/1/93		40.8	ı	ı	;	ı	11.6
ist.	-14	10/1/93 +	:	40.8	ı	ı	1	ı	7.2
•W		10/8/93	,	1	ı	1	ı	1	30
		10/8/93 f	,	8.0 ₈	ı	ı	ı	ı	27.3
		10/15/93	1	8.0	ı	1	ı	1	28.5
		12/2/93	ı	8.05	8.0 ₈	1	ı	1	23.1
		12/2/93 +	ı	40.8 8.0	&.0 8.0	1	ı	ı	16.4
		6/6/94 1	ı	40.8 8.0	€0.8	ı	;	ı	33
		11/7/97	23	۲۱	1	17.8			12.4
potassium	hg/L	3/12/87 f	1	848	948	14,740	22,220	1	15,850
		11/7/97	46,900	1,380	1	68,100		1	60,500
		2/10/98	36,000	1,700	3,300	54,000	1	ı	28,000
	,	3/20/98	38,000	1,600	3,300	58,000	ı	1	41,000
		86/6/6	24,000	1,400	3,100	92,000	ı	ı	45,000
selenium	hg/L	11/10/82	ı	힏	19	pu	Þ	5	p
		1/83	1	ı	1	0.022	ı	1	ı
		10/83	1	0.0237	0.0178	1	i		:

Table 1

Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

					Data Marine		- Common		
Analyte	Units	Date	SW-0	SW-1	SW-2	SW-8	SW-7	6-MS	SW-10
				PGRL-1]	(SW-11)	PGRL-01		5	(S-MS)
				(Site 2)	(Site 3)	7]	/Site 41
			Confluence of SW-10 and Lonfit River	Lonfit River Upstream	Lordit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	3
selenium (continued)	1/gr	4/84	-		-		ľ	0.0148	
		3/6/86	:	5.26	ı	1.46	ı		۱ ۱
		4/21/86	1	5.7	1	4	1	:	۱ ۱
		7/23/86	ı	6.77	1	90.9	ı	ı	1
		98/56/86	1	4.78	ı	4.35	ı	,	1
		12/22/86	ı	4.49	1	442	1	ı	1
		3/12/87 f	ı	Ą	8	₩	\$	1	\$
		3/25/87	1	3.82	ı	5.03	ı	,	٠,
		6/3/87	1	5.21	1	5.45	1	ı	:
		10/14/87	1	1.54	1	1.31	ı	1	ŧ
		12/9/87	ı	1.29	ı	1.65	ı	ı	ı
		11/7/97	<125	<125	L	<125	ı		<125
silver	рg/L	11/10/82	1	<10	13	دا 0	40	م ا 0	410
		1/83	ı	1	0.0023	1	ı	1	1
		8/83	:	0.00687	ı	ı	:	,	ı
		10/84	:	1	ı	ı	1	0.016	ı
		3/85	1	ı	ı	0.00392	ı	•	ł
		3/8/86	ı	8.33	1	4.17	:	1	1
		4/21/86	ı	1	ı	6.67	1	ı	ı
		7/23/86	1	2.38	ı	7.14	1	ı	ı
		9/26/86	ı	9.52	ı	9.52	1	,	;
		12/22/88	:	2.22	ı	8.89	1	1	ı
		3/12/87 f	ı	5.	5.1	1.6	\$.1	\$5.1	5.1
		3/25/87	ı	4.76	ı	4.76	ı	ı	
•1		6/3/87	1	222	ı	4.4	ı	1	<u> </u>
		10/14/87	1	6.25	:	4.17	,	ı	1
		12/9/87	1	4.17	1	6.25	1	ı	,
		9/27/90	ı	6.1	60.1	ı	ı	,	40.1
		9/27/90 f	ı	60.1	40.1	ı	ı	1	6.1
		10/25/90	,	7	,				

Table 1

Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						•				
						sambie ide	Sample Identification and Location	ocation		
	Analyte	Units	Date	0-MS	SW-1	SW-2	SW-5	SW-7	8-MS	SW-10
						(SW-11)				(SW-3)
		3			[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	
					(Site 2)	(Site 3)				(Site 13
	20 20 20 20 20 20 20 20 20 20 20 20 20 2			Confluence of SW-10 and Lonfit River	Lonfit River Upstream	Lonfit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeest	Leachate Stream
	sliver (continued)	Agr	10/25/90 f	1	1.0	50.5				
			6/8/93	1	6	000		l		- 6
			6/8/93 f	,	8 6	0 0		1 1	ı	9 6
			6/22/93 f	ı	40.2	۱,	,			7 6
-			7/13/93 f	1	6.1	6.1	ı	ı		, Ç
			7/28/93 f	1	6.1	ı	ı	ı	ı	5
			8/17/93 f	ı	40.2	<0.2	,	1	ı	9 6
			8/27/93 f	t	<0.2	ı	,	ı	ı	8
			9/3/93 f	ı	6.	ı	1	ı	ı	9 0
			9/10/93 f	ı	<0.2	1	1	ı	ı	4.0
			9/17/93		ı	ı	ı	ı	:	0.1
			9/17/93 +	1	6.1	60.1	ı	ı	,	6
8			9/24/93	1	0.1	ı	ı	ı	ı	6 0.1
iete			9/24/93 f	1	6.1	1	ı	1	ı	0.0
Me			10/1/93	ı	0.1	ı	1	1	ı	0.1
			10/1/93 f	1	6.	ı	1	ı	ı	0.1
			10/8/93	ı	ı	ı	ı	,	ı	6.1
			10/8/93 f	1	6.	1	ı	ı	,	6.1
			10/15/93	ı	6.	ı	1	1	1	8
		-coets	12/2/93	1	6.	6 0.1	ı	1	ı	8
			12/2/93 f	ı	₽.	€0.1	,	ı	ı	6.1
			6/6/94	ı	<u>6</u>	6.1	1	1	1	40.1
	=		11/7/97	<1.9	<1.9	_	<1.9	ı	1	41.9
	sodium	hg/L	3/12/87 f	ı	17,890	19,180	126,600	119,800	1	92,870
			11/7/97	159,000	14,200	ı	192,000	· 1	ı	169.000
			2/10/98	160,000	20,000	25,000	230,000	ı	ı	97,000
			3/20/98	250,000	22,000	31,000	260,000	,	ı	160,000
			86/6/6	130,000	18,000	25,000	340,000	ı	ı	200.000

Table 1

Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

ı	÷					Sample Ide	Sample Identification and Location	ocation.		
	Analyte	Units	Date	0-MS	SW-1	SW-2 (SW-11)	SW-5	SW-7	8-MS	SW-10
					[PGRL-1]	[PGRL-2]	[PGRL-0]		[FF-3]	(240)
					(Site 2)	(Site 3)				(Site 1)
				Confluence of SW-10 and Lonfit River	Lonfit River Upstream	Lonfit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream West
	thallium	J/g/L	11/10/82	1	P	P	2	2	Ę	3
			3/12/87 f	ı	40	₽	€	: 8	₹ ₹	2 5
			11/7/97	<160	<160		×160	2 1	ļ	, t
	tín	Light.	11/10/82	ं।	뒫	2	2	5	P	뒫
			3/12/87	1	- ZIV	41	47	417	417	417
	vanadium	ρg.	11/10/82	1	Ē	5	5	Pu	2	2
			3/1/87 f	ı	5.4	3.6	2.5	12	1	.6
			11/7/97	3.2	6.5	1	6	1	ı	5.6
	Zinc	뢷	11/10/82	1	Ħ	<11 (91)	19	140	50	35
			3/12/87 +	1		8	3	2	1	00
			9/27/90	1	0.7	4.	ı	ı	ı	9.55
			9/27/90 1	1	6 .1	0.2	ı	ı	1	3.6
			10/25/90		6 .1	0.2	ı	ı	ı	5.1
ela			10/25/90 f	ı	6.1	6	i	ı	ı	2.6
tel			6/8/93	1	63	0.1	ı	ı	1	2.3
¥			6/8/93 f	1	5	0.1	,	ı	1	2.2
			6/22/93 1	ı	2.7	1	1	1	1	9.6
			7/13/93 f	1	6.0	0.2	,	1	ı	1.7
			7/28/93 f	ı	4	1	,	;	ı	3.1
			8/17/93 +	ı	0.7	₽.	,	ı	ı	1.2
			8/27/93 f	;	-	ı	1	ł	ı	6.2
				1	8.0	1	1	1	ı	2.2
			9/10/93 f	1	-0.1 1.0	ı	ı	ı	ı	/4 8
			9/17/93	1	,	ı	1	ı	ı	10.
			9/17/93 f	ı		Br	1	ı	1	ဖ
			9/24/93	ı	B.	1	1	:	ı	10.6
			9/24/93 f	1	2	,	ı	ı	ı	2.9
			10/1/93	1	3.7	;	1	ı	ı	23
			10/1/93 +	ı		ı	ı	ı	1	2.9
			10/0/83		2	1	1	-	1	16

Table 1

Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

Analyte Units Zinc (continued) µg/L acetone µg/L 2-butanone µg/L	Name and Address of the Owner, or			Sample Ide	Sample Identification and Location	-ocation		
zinc (continued) acetone 2-butanone	Date	O-MS	SW-1	SW-2	SW-5	SW-7	8-MS	SW-10
zinc (continued) acetone 2-butanone				(SW-11)				(SW-3)
zinc (continued) acetone 2-butanone			[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	
zinc (continued) acetone 2-butanone			(Site 2)	(Site 3)				(Site 1)
zinc (continued) acetone 2-butanone		Confluence of SW-10 and Lonfit River	Lordit River Upstream	Lordit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream West
acetone 2-butanone	10/8/93 f	1	0.1	ı	1	1		2.2
acetone 2-butanone	10/15/93	ı	6.1	1	ı	ı	ı	8,5
acetone 2-butanone	12/2/83	:	0	6.1	ı	ı	ı	2.3
асеtопе 2-butanone	12/2/93 f	ı	6.7	60.1	ı	ı	1	2.3
acetone 2-butanone	6/6/94 f	ì	0.2	0.2	,	ı	ſ	4.
	11/7/97	29.6	6	ı	21.8	ı	4	40.4
	2/10/98	\$ \$	65	\$	\$	1	1	9 9 9
	3/20/98	\$50	×20	°20	Ş	1	ı	~ 20
	86/6/6	8	\$	<85	<85	1	1000	<85
	11/10/82	ı	₹	\$	\$	\$	\$>	8
	3/12/87	1	2 Jb	2 jb	9 P	a 8	ı	٠ 10
	11/10/82	1	Ą	₽	\$	8	Ą	8
	3/12/87	1	qí 9	a b	12 b	~10	٠ 10	40
carbon disulfide µg/L	11/10/82	1	\$	8	٨	8	₽	\$
	3/12/87	1	8	প	\$	1.	\$	8
chlorobenzene µg/L	3/12/87	-	\$	\$	Ą	3.j	8	\$
	11/10/82	1	\$	\$	8	8	_	8
1,1-dichloroethane µg/L	11/10/82	1	\$	\$	\$	\$	_	Ą
ethylbenzene µg/L	3/12/87	_	\$	8	8	\$	8	8
2-hexanone µg/L	11/10/82	1	8	Ą	Ą	₩	\$	\$
4-methyl-2-pentanone µg/L	11/10/82	1	\$	Ą	\$	8	8	Ą
methylene chloride µg/L	11/10/82	1	\$	₩	Ą	\$	\$	8
	3/12/87	1	₩	2,0	٧	Ş.	٧	₩

Table 1

Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Sample ide	Sample Identification and Location	ocation.		
	Analyte	Units	Date	0-MS	SW-1 [PGRL-1]	SW-2 (SW-11) [PGRL-2]	SW-5 [PGRL-0]	SW-7	SW-9 [LFL-3]	SW-10 (SW-3)
				Confluence of SW-10 and Lonfit River	(Site 2) Lorifi River Upstream	(Site 3) Lorift River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	(Site 1) Leachate Stream West
	styrene	hg⁄L	11/10/82	I	_	\$	\$	\$	\$	\$
8			3/12/87	1	\$	\$	\$	8	\$	\$
ΛOC	toluene	µg/L	3/12/87	1	1,b	1 Jb	4. 0.	Ą	\$	\$
	vinyl acetate	μg/L	11/10/82	1	<5	<5	Ą	₹	\$	₽
2	xylenes	μg/L	3/12/87	•	\$	\$	₹	\$	8	\$
80	diethyl phthalate	µg/L	11/10/82	•	50	<20	8 8	0Z>		0Z>
POAS	bis(2-ethylhexyl)phthalate	ug/L	3/12/87	1	<10	<10	دا 0	40	410	3.0
,	phenol	µg/L	3/12/87	1	<10	<10	<10	<10	دا 0	3 j
	aldrin	hg/L	6/89	<0.2	-	1	,	ı		<0.2
			68//	<0.2	ı	ı	1	1	1	<0.2
			8/83	<0.2	1	ı	1	1	ì	<0.2
25			68/6	<0.2	ı	ı	1	ı	1	<0.2
bCE			10/89	40.5	ı	1	ı	ı	ı	<0.2
& 86			11/89	ç0.2		1	•	1	1	<0.2
pioi	BHC-alpha	µg∕L	68/9	<0.16	1	1	,		1	<0.16
Pest			68/2	<0.16	1	ı	ı	:	ı	49.16
			68/8	<0.16	ı	1	ı	t	ı	<0.16
			68/6	<0.16	1	1	1	I	ı	<0.16
			10/89	<0.16	1	ı	ı	ı	Ü	<0.16
			11/89	<0.16	1	ı	1	ı	ı	<0.16

Table 1

Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

- 1						Sample Ide	Sample Identification and Location	ocation		
	Analyte	Units	Date ·	0-MS	SW-1	SW-2 (SW-11)	SW-5	8W-7	8-MS	SW-10
					[PGRL-1]	[PGRL-2]	[PGRL-0]		[1.5]	
				Confluence of SW-10 and Lonfit River	{Site 2} Lordt River Upstream	(Site 3) Lordit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeest	(Site 1) Leachate Stream
	BHC-beta	hg/L	68/9	4.0>		1			1	4.0
			48/2	<0.4	ı	:	ı	ı	i	40.4
			8/89	4.0>	ı	ı	ı	1	ı	4.0>
			68/6	<0.4	ı	ı	ı	ı	ı	40.≻
			10/89	<0.4	:	1	ł	1	ı	4.0×
			11/89	<0.4	ı	ı	ı	1	1	40. 4
81	BHC-delta	µg/L	68/9	<0.2	1	ı	1	,		<0.2
b CE			48/2	<0.2	1	ı	ı	ı	1	<0.2
B 84			8/89	<0.2	1	1	ı	ı	1	40.2
piol			68/6	<0.2	;	1	1	t	1	<0.2
1809			10/89	<0.2	1	1	ı	1	1	<0.2
			11/89	<0.2	-		1	1		<0.2
	BHC-gamma	µg/L	68/9	<0.2		1	-	ı	ı	<0.2
			7/89	<0.2	ı	ı	ı	1	ı	<0.2
			8/89	<0.2	1	ı	1	ı	1	<0.2
			68/6	<0.2	ı	1	ı	ı	1	<0.2
			10/89	<0.2	ı	1	ı	ı	1	<0.2
-			11/89	<0.2	1	1	ı	1	1	<0.2

Table 1

Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Octable Like	777			
						Sample Ide	Sample Identification and Location	ocadon		
	Analyte	Units	Date	SW-0	SW-1	SW-2	SW-5	SW-7	8-MS	SW-10
						(SW-11)				(SW-3)
					[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	
				3	(Site 2)	(Site 3)			700	(Site 1)
				Confluence of SW-10 and Lonfit River	Lonfit River Upstream	Lorifit River Downstream	Leachate Stream South	Leachate Pond South	Leachste Stream Southeast	Leachate Stream West
	chlordane-alpha	μg/L	68/9	<0.1	1	1	ı		1	6.1
			7/89	40.1	1	ı	ı	ı	ı	6.1
			8/89	6.1	ı	,	ı	ı	ı	. <u>6</u>
	93.75	1	68/6	£0.1	i	1	1	ı	ı	<u>6</u>
			10/89	40.1	1	. 1	ı	ı	ı	0
			11/89	<0.1	ı	ŧ	,	ı	ı	6.1
9	chlordane-gamma	1/6rt	68/9	<0.1	1	ı	ı		1	\$0.1
PCE			7/89	£0.1	ı	ı	1	ı	ı	.0 1.0
\$ s			8/89	0.1	ı	ı	1	ı	1	0.1
clde			68/6	6.1		ı	1	ı	ı	.0 1.1
Jes 9			10/89	6.1	1	1	ı	1	ı	6 0.1
1			11/89	<0.1	÷	ţ	1	ı	1	<0.1
	4,4'-DDD	ηθη.	68/9	40.4	1	ı	ı	ı		<0.4
			7/89	4.0>	1	ı	1	t	ı	4.0>
			8/89	4.0	ı	ı	1	ı	1	4.0 ≻
			68/6	4.0>		1	1	1	ı	4.02
			10/89	4.0>	ı	1	ı	ı	ı	4 .0>
			11/89	<0.4	-	t	1	1	ı	<0.4

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Sample Ide	Sample Identification and Location	ocation		
	Analyte	Units	Date	0-MS	SW-1	SW-2 (SW-11)	SW-5	SW-7	8-Ms	SW-10
					[PGRL-1]	[PGRL-2]	[PGRL-0]		[1.3]	
				Confluence of SW-10 and Longt River	(Site 2) Lordi River	(Site 3) Londi River	Leachate Stream	Leachate Pond	E	(Site 1) Leschate Stream
	4,4"-DDE	pg/L	68/9	40.2				1	Т	200
			7/89	40.2	1	ı	,			, ,
			8/89	<0.2	ı	1	ı	1	1 1	7 ° 67
			68/6	<0.2	1	1	1	ı	I	40.2
			10/89	<0.2	1	ı	1	1	ı	<0.2
			11/89	<0.2	ı	1	ı	1	ı	<0.2
	4,4'-DDT	1/6rt	68/8	4.0>	1	ı		,	,	4.0
S			7/89	4.0	ı	ı	ı	ı	ı	4.0>
b CB			8/89	4.0>	ı	ı	ı	ı	ı	4.0
y si			68/6	<0.4	ı	ı	ı	ı	ı	4.0>
ppio			10/89	4.0>	ı	:	1	ı	1	* 0.4
1884			11/89	4.0>	ı	ı	1	ı	1	4.0
			2/10/98	€0.1	-0.1	0.1	6.1	t	ı	0.1
			3/20/98	€0.1	<0.1	<0.1	0.1	ı	1	0.1
	diazinon	hg/L	68/9	4.0 >	1	ı	ı	ı		<0.4
			7/89	4.0>	ı	t	ı	t	ı	4 0.4
			8/89	40.4	1	ı	1	ı	ı	4.0
			68/6	4.0>	ı	ı	1	ı	:	4.0>
			10/89	<0.4	ı	1	ı	ı	ı	4.0
			11/89	4.0>		1	ı	1	1	40.4

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Sample Ide	Sample Identification and Location	ocation		
Analyte	5	Units	Date	0-MS	SW-1	SW-2 (SW-11)	SW-5	SW-7	8-MS	SW-10
			a.		[PGRL-1]	[PGRL-2]	[PGRL-0]		[LF-3]	(210)
				Confitence of SW-10	(Site 2)	(Site 3)				(Site 1)
-				and Londit River	Upstream	Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream West
dieldrin	31	ng/L	11/10/82	:	40.1	<0.1	6.1	6.1	<0.1 (0.21)	¢0.1
			6/83	<0.2	ı	ı	1	,	. 1	<0.2
	,		7/89	<0.2	ı	ı	ı	,	ı	<0.2
	-		8/89	<0.2	i	ı	ı	ı	1	<0.2
			68/6	<0.2	1	1	1	ı	1	<0.2
	**		10/89	<0.2	ı	1	ı	1	ı	<0.2
			11/89	<0.2	1	ı	1	1		<0.2
endosulfan sulfate		μg/L	11/10/82	1	<0.1	40.1	40.1	40.1	<0.1 (0.135)	6.1
endrin	Bri	hg/L	68/9	<0.2	1	1	ı		1	<0.2
y 84		-84	7/89	<0.2	1	ı	1	ı	ı	<0.2
cjq		Sil -	8/89	<0.2	ı	1	1	ı	;	<0.2
tise4	32.50	200	68/6	<0.2	:	1	ı	1	ı	<0.2
- !			10/89	40.2	ı	ı	ı	ı	ı	<0.2
			11/89.	<0.2	1	1	ı	1	12 I	<0.2
ethion	Brt -	hg/L	68/9	4 0.4	1	1	1			4.05
			7/89	4.0>	1	ı	ı	ı	ı	6 4.0
			8/89	4.0>	ı	,	1	ı	1	4.0
	-		68/6	4.0>	1	ı	ı	ı	1	4.0
			10/89	4.0>	1	ı	1	ı	ı	4.0>
			11/89	<0.4	1	:	ı	1	ı	4.0

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

	٠				25	Sample Ide	Sample Identification and Location	-ocation		
	Analyte	Units	Date	0-MS	SW-1	SW-2	SW-5	SW-7	SW-9	SW-10
			â			(SW-11)				(SW-3)
					[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	•
				Or Miss of State of	(Site 2)	(Site 3)				(Site 1)
				and Lonfit River	Upstream	Downstream	South	South	Southeast	Leachate Stream West
	heptachlor	1/6rt	6/88	<0.24	1	1		,		<0.24
			7/89	<0.24	ı	ı	1	ı	ı	<0.24
			8/88	<0.24	ı	ı	1	ı	1	<0.24
		200	68/6	<0.24	ı	ı	1	ı	1	<0.24
			10/89	<0.24	ı	ı	1	1	ı	<0.24
			11/89	<0.24	-	1	ı	1	ı	<0.24
	malathion	hg/L	68/88	4	1	1	,	1	1	2
			7/89	3	ı	ı	1	I	1	3
			8/89	4	1	ı	1	ı	1	3
88			68/6	2	ı	ı	ı	ı	ı	3
PC			10/89	3	ı	ı	ı	1	ı	3
. 8 86			11/89	2	;	1	ı	ı	1	3
epjo	methoxychlor	hg/L	68/8	<0.2	ı	ŀ	1	ŀ		40.2
189 ,			7/89	<0.2	ı	ł	ı	ı	ı	<0.2
d			68/89	<0.2	1	1	ı	1	ı	<0.2
			68/6	<0.2	ı	1	×1	ı	1	<0.2
			10/89	7.0	1	1	1	1	1	40.2
			11/89	<0.2	-	_	ı	ı	1	<0.2
	naled	hB/L	68/89	\$	1	1	ı	1	ı	8
			7/89	8	ı	1	ı	1	ı	8
	3312		8/83	8	1	1	1	1	ı	8
			68/6	8	ı	ı	1	ı	1	8
			10/89	8	1	1	1	ı	ı	8
			11/89	<2		1	ı	ì	1	7

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

	- Control					Sample Ide	Sample Identification and Location	-ocation		
Analyte	rte	Units	Date	0-MS	SW-1	SW-2	SW-5	L-MS	6-MS	SW-10
						(SW-11)				(SW-3)
					[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	
				Confluence of SW-10 and Lonfit River	(Site 2) Lonft River Upstream	(Site 3) Lordit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	(Site 1) Leachate Stream West
parath	parathion, ethyl	µg/L	68/9	8	1	1		1	1	8
			7/89	8	ı	1	ı	ı	ı	١ ٥
			8/89	8	1	ı	ı	I	ı	' 0
			68/6	8	ı	:	ı	ı	,	٥ ا
			10/89	8	ı	ı	ı	ı	1	7 7
			11/89	8	1	L	1		1	8
parath	parathlon, methyt	ng/L	68/9	8	:			1	1	2
			4/89	8	ı	ı	1	ı	ı	9
			8/83	8	1	1	ı	ı	1	٥, ١
-			68/6	8	1	1	ı	1	,	۵ ا
			10/89	8	ı	ı	ı	1	1	8
_			11/89	2	-	ı	1	ł	ı	8
PCB-1016	1016	rg/	2/10/98	₹	₹	۲	₹	1		₹
_			3/20/98	۷.	<1	₹	⊽	ı	1	⊽
PCB-1221	1221	rg/	2/10/98	8	8	8	8	•		8
			3/20/98	٧	<2	2	8	ı	ı	8
PCB-1232	232	hg/L	2/10/98	⊽	₹	₹	₹	ı	1	₽
100			3/20/98	v	⊽	⊽	₹	1	1	٧
PCB-1242	747	rg/L	2,40,00	1 7	. 0	6.	40.1 (3.84)	< 0.1	6.1	<0.7(1.12)
			3/20/98	v v	, ,	v v	VV		ı	⊽ ₹
PCB-1248	1248	1/6rl	2/10/98	⊽	₽	₹	V			7
			3/20/98	۲	٧	₹	⊽	ï	. 1	₹ ₹
PCB-1254	254	ng/L	2/10/98	₹	₹	⊽	⊽	1	-	⊽
			3/20/98	⊽	٧	V	٧	1	ı	₹
PCB-1260	780	hg/L	2/10/98	₹	₹	₹	₹	1	ı	⊽
			3/20/98	٧	٧	⊽	₹	-	ı	⊽
TRPH		hg/L	2/10/98	×1,000	00°. V	√1,000	<1,000	ī	1	<1,000
			3/20/98	<1,000	<1,000	<1,000	<1,000		1	V 000

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

						Sample Ide	Sample Identification and Location	ocation		
	Analyte	Units	Date	0-MS	SW-1	SW-2	SW-5	SW-7	6-MS	SW-10
						(SW-11)	-= ->			(SW-3)
		NAME OF			[PGRL-1]	[PGRL-2]	[PGRL-0]		(LFL-3)	
					(Site 2)	(Site 3)				(Site 1)
				Confluence of SW-10 and Lonfit River	Lonfit River Upstream	Lonfit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream
	ammonia	mg/L	11/7/97	32.2	<0.06		77.1			367
	BODs	mg/L	2/10/98	14	22	. n. 1	27			25.0
		,	3/20/98	. 4	12	; ;	. 6	!	1 ;	<u>s</u> 6
			96/6/6	14	0.93	42	2		1 1	3 -
	COD	mg/L	2/10/98	100	410	×10	76			• [
			3/20/98	140	70	₽	: 25	ı		5 5
			86/6/6	86	<10	29	170	1		2 9
	cyanide	ηδ/L	3/12/87		95	<10	<10	410		40
1900	nitrogen as nitrate	mg/L	7/80			0.23	1	,		
		90.307	12/80	ı	0.32	ı	1	ı	ı	1
			5/81	;	ı	1	1.67	ı	ł	ı
,			2/10/98	0.5	<0.05	9.0	Ŧ	ı	1	8.0
191			3/20/98	0.77	<0.05	0.52	8.8	ı	1	0.54
ew			86/6/6	13	<0.05	0.68	4	ı		98
616	nitrogen as nitrite	mg/L	7/80	:		0.05	1	1		1
4 J			8/81	-	1	_	0.343	ı	1	1
erti	nitrogen as nitrate+nitrite	mg/L	11/7/97	8.6	<0.03		7.1			2,4
0			2/10/98	1.7	<0.05	9.0	=	1	1	0.89
		11.00	3/20/98	2.7	60.05	0.52	8.8	ı	ı	0.65
67			98/8/8	44	⇔ 0.05	6.0	24	1	1	36
2.5	nitrogen (total Kjeldahi)	mg/L	11/7/97	41.5	<0.15		28.9		ı	44.2
			2/10/98	8	<0.75	<0.75	3.4	ı	ı	25
			3/20/98	8	<0.75	<0.75	n	ı	1	8
			86/6/6	6.6	<0.75	0.8	38	ı	ı	22
	nitrogen (total organic)	mg/L	11/7/97	9.3	<0.15	1	1.8	1	1	1.7
	La	ı	11/10/82	:	œ	&	7.7	7.8	7.4	7
			3/12/87	ı	7.96	6.85	6.2	1	ı	2.75
	ı		2/10/98	7.8	8.2	7.5	9	ı	ı	7.4
			3/20/98	7.5	۲,	7.8	7.9	ı	ı	7.3
			20000		0.1	97,	R./			7.3

Table 1
Historical Leachate and Surface Water Analytical Data
Ordot Landfill
Territory of Guam

					A VIII	Sample Ide	Sample Identification and Location	ocation.		
	Analyte	Units	Date	0-MS	SW-1	SW-2	SW-5	SW-7	SW-9	SW-10
			2000			(SW-11)				(SW-3)
			931140		[PGRL-1]	[PGRL-2]	[PGRL-0]		[LFL-3]	
					{Site 2}	(Site 3)				(Site 1)
				Confluence of SW-10 and Lonfit River	Lonfit River Upstream	Lordit River Downstream	Leachate Stream South	Leachate Pond South	Leachate Stream Southeast	Leachate Stream West
	phosphorus (total)	mg/L	1/80	1		0.77		-	1	
			8/80	1	1	ı	0.121	ı	ı	1
	£		9/81		0.54	ı	1	1	ı	ı
			11/7/97	0.1	<0.01	ı	0.11	,	ı	60.0
			2/10/98	6	0.1	6.0	6.1	:	ı	8
			3/20/98	40.1	60.1	<u>6</u>	0.11	1	;	0.21
9.			86/6/6	<0.1	<0.1	0.1	60.1			8.
aje	TDS	mg/L	11/7/97	862	209	1	1,040	,		696
ms		74.0	2/10/98	870	230	280	1,100	,	ı	280
ns 9			3/20/98	1,100	\$2	240	000,1	1	ı	906
let.			9/9/98	370	170	270	1,500			1,400
410	100	mg/L	11/7/97	45.3	2.8	1	41.6	-	ı	48.8
			2/10/98	36.4	٧	e	29.3	ı	1	19.8
			3/20/98	39	₹	1.79	19.9	t	ı	72
	2		86/6/6	23	1.2	2.2	47			84
	TSS	mg/L	11/7/97	×10	<10	,	66.5	1	1	21
			2/10/98	22	-	£.	6.	ı	ı	7
			3/20/98	19	220	⊽	1.6	ı	ı	12
			9/9/98	2.3	1.3	3.7	60	ı	ı	6.3

Historical Leachate and Surface Water Analytical Data Territory of Guam Ordot Landfill Table 1

					Sample ider	Sample Identification and Location	ocation		
Analyte	Units	Date	0-MS	SW-1	SW-2	SW-5	SW-7	8W-9	SW-10
					(SW-11)				(SW-3)
				[PGRL-1]	[PGRL-2]	[PGRL-0]		(LFL-3)	
				(Site 2)	(Site 3)				(Site 1)
			Confluence of SW-10	Lordt River		Leachate Stream Le	achate Pond	sachate Stream	Leachate Stream
			and Lonfit River	Upatream		South	South	Southeast	West

References for Data:	Błack & Vestch. 1983. Remedial Investigat
Sampling Dates:	11/10/82

Camp, Dresser & McKee, Inc (CDM), 1985, Revised Work Plan Memorandum for Ordot Landfill, Guam. November 20. ation, insular Territory Hazardous Waste Sites, Draft Report. May 20. 3/6/86 through 12/9/87

Water and Environmental Research Institute (WERI) of the Western Pacific University of Guam, USGS funded study

CDM. 1987. Final Initial Site Characterization Report, Ordot Landfill, Island of Guam. November 18.

WERI. 1989. The Occurrence of Certain Pesticides in Ground and Surface Waters Associated with Ordot Landfill in the Page River Basin,

Guam Mariana Islands. Technical Completion Report No. 72. November.

WERI Trace Metals Sampling Program USEPA/Guam EPA Sampling Event

9/27/90 through 6/6/94

11/7/97

2/10/98

3/20/98

86/6/6

6/89 through 11/89

3/12/87

6/80 through 3/85

Unitek Environmental. 1998. Surface Water Sampling Report for February 1998, Ordot Landfill, Ordot, Guam. February 27.

Unitek Environmental, 1998. Surface Water Sampling Report for March 1998, Ordot Landfill, Ordot, Guern. April 27.

UEG Unitak. 1998. Surface Water Sempling Report for September 1998, Ordot Landfill, Ordot, Guam. October 8.

Sample identification given in brackets is for the corresponding sample location from the 1980-1885 Guam EPA sampling program (CDM, 1985) and the 1988-1987 WERI study. Sample Identification given in curly brackets is for the corresponding eample location from the 1990-1994 trace metals sampling program (WERI).

Sample Identification given in parentheses is for the corresponding sample location from the November 1982 Remedial Investigation (Black & Veatch, 1983).

Top sample identification is nomenclature used during all other investigations.

Notes:

Detected concentrations are shown in bold.

Concentrations in parentheses are for corresponding duplicate sample, where primary sample result was non-detect and duplicate sample was not.

nd ≈ not detected	- = not analyzed or not established	<5 = not detected (reporting limit listed)				
COD = chemical oxygen demand	TDS = total dissolved solids	TOC = total organic carbon	TSS = total suspended solids	f = field filtered sample (all other samples are or presumed to be unfiltered)		b = constituent also detected in method blank, indicating laboratory contamination
μg/L ≂ micrograms per liter	mg/L = miligrams per liter	VOCs ≈ volatile organic compounds	SVOCs = semi-volatile organic compounds	PCBs = polychlorinated biphenyls	TRPH = total recoverable petroleum hydrocarbons	BOD ₅ = biological oxygen demand (5-day)

Table 1a
Historical Leachate and Surface Water Analytical Data
Ordot Dump
Territory of Guam

					Sample k	Sample Identification and Location	Location	
				0-MS	SW-1	SW-2	SW-5	SW-10
	Analyte	Units	Date	Confluence of				:
				SW-10 and	Lonfit River	Lonfit River	Leachate	Leachate
		ļ		Lonfit River	Upstream	Downstream	Stream South	Stream West
			7/10/98		2.3	1		
			8/11/98	0.34	0.43	0.56	ı	0.16
	alumlum	mg/L	11/23/98	0.253	0.0196J	0.0477J	1	0.0596.1
			12/98	0.38	0.0423	0.139	0.0436.1	0.248
			1/99	0.0786J	0.0525J	0.0875J	0.174	0.635
			7/10/98	1				1
			8/11/98	ı	ı	ı	1	0.012
	arsenic	mg/L	11/23/98	ı	ı	1	ı	0.0015.1
			12/98	<0.005	<0.005	<0.005	<0.005	<0.005
			1/99	0.0025J	0.0016J	0.0025J	0.002	0.0031J
			7/10/98	1		1	0.093	0.33
SJE			8/11/98	1	ı	ı	0.081	0.44
atel	parium	mg/L	11/23/98	0.152	0.00068J	0.0114	0.133	0.176
Ν			12/98	0.0624	0.008J	0.0139	0.134	0.159
			1/99	0.102	0.0042J	0.0092J	0.105	0.194
			2/10/98	1	1		ı	,
			8/11/98	ı	ı	ı	ı	ı
	cadmium	mg/L	11/23/98	1	ı	1	ı	ı
			12/98	<0.002	<0.002	<0.002	<0.002	<0.002
			1/89	<0.002	<0.002	<0.002	<0.002	<0.002
			2/10/98	40	98	40	83	120
			8/11/98	32	32	31	83	130
	calcium	mg/L	11/23/98	90.1	38.8	41.8	67.5	86.4
			12/98	64.1	40.6	42	71.8	87.9
			1/99	66.3	40.1	41.7	65.0	86.4

Table 1a
Historical Leachate and Surface Water Analytical Data
Ordot Dump
Territory of Guam

					Sample k	Sample Identification and Location	Location	
	4 1 - 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	-	i	0-MS	SW-1	SW-2	SW-5	SW-10
	Analyte		Date	Confinence of				
				SW-10 and	Lonfit River	Lonfit River	Leachate	Leachate
				Lonfit River	Upstream	Downstream	Stream South	Stream West
			7/10/98	1.8	1. 7.	က	45	53
	milaceton	, c	8/17/98	17	ά	c	r.	g
	inniespiod	- W	11/23/98	39.1	5 6	2 95	64.3	2 6
			12/98	4.4	1.27	2.64	2 92	28.5
			1/99	26.5	1.25	3.1	49.6	31.2
sl			7/10/98	26	24	33	260	240
eta	:		8/11/98	19	19	20	260	280
M	sodium	mg/L	11/23/98	192	18.1	24.2	242	116
			12/98	75.6	16.1	21.6	230	106
			1/99	130	17.5	25.8	217	130
			2/10/98	1	ı	ı	1	1
			8/11/98	0.062	0.058	1	0.14	0.072
	zinc	mg/L	11/23/98	0.0123	0.005J	0.0033J	0.0111	0.0122
			12/98	0.0059	<.005	<0.005	0.0073	0.0162
			1/99	0.010	0.0034J	0.0036J	0.0064	0.0191
			7/10/98	0.031	1	ı	1	57
s			8/11/98	ı	:	ı	ı	. 65
ıət	ammonla	mg/L	11/23/98	22.8	0.3	0.4	7.41	19.1
əw			12/98	5.48	0.13	0.3	2.4	14.3
BTE			1/99	16.1	0.2.1	0.3	0.55	34.3
Ч			2/10/98	6.	0.51	1	1	12
юц	4		8/11/98	9.	1.2	1.5	1.2	56
ю	BODs	mg/L	11/23/98	9.7	0.3J	2	18	7.4
			12/98	8.4	\$	8	6.9	17
The second second			1/99	7.0	1	2	9	12

Tabie 1a
Historical Leachate and Surface Water Analytical Data
Ordot Dump
Territory of Guam

					Sample Ic	Sample Identification and Location	Location	
				SW-0	SW-1	SW-2	SW-5	SW-10
	Analyte	Units	Date	Confluence of			iliano il fico	:
				SW-10 and	Lonfit River	Lonfit River	Leachate	Leachate
				Lonfit River	Upstream	Downstream	Stream South	Stream West
			7/10/98	1	29	47	91	210
			8/11/98	ı	ı	1	63	280
	000	mg/L	11/23/98	110	ı	9	1	S2 S2
			12/98	8	31	37	270	29
			1/99	190	40	<20	4	98
			2/10/98	0.15	ı	0.77	3.4	0.31
			8/11/88	1	ı	ı	2.6	0.07
	nitrate	mg/L	11/23/98	4.81	ı	0.56	15.1	2.81
			12/98	2.89	0.1	0.54	19.4	3.07
SJ			1/99	2.27	<0.1	0.85	11.7	7
ete			7/10/98	1	ı	0.77	3.4	0.24
me			8/11/88	ı	ı	1	5.6	ı
ne.	nitrite	mg/L	11/23/98	0.655	ı	0.11	0.978	0.03
3r F			12/98	0.481	<0.02	0.097	1.41	0.16
ιμ			1/99	0.708	<0.02	0.042	9.04	0.067
0			7/10/98	1	1	1	2.7	72
	nitroden (total		8/11/98	ı	9.0	1	2.9	100
	Kieldah!)	mg/L	11/23/98	56	0.68	0.84	9.94	21.4
	,		12/98	6.48	0.27	0.68	5.15	16
			1/99	18.7	0.4	0.76	3.7	38.8
	33		2/10/98	80	8.3	8	7.8	7.2
		stq	8/11/98	7.8	7.8	7.3	7.6	7.2
	Į.	nnits	11/23/98	7.71	8.09	7.89	7.8	7.36
			12/98	7.71	7.91	7.68	79'7	7.24
			1/99	8.1	8.39	7.96	8.15	7.39

Historical Leachate and Surface Water Analytical Data **Territory of Guam Ordot Dump** Table 1a

					Sample Ic	Sample Identification and Location	Location	
				0-MS	SW-1	SW-2	SW-5	SW-10
	Analyte	Units	Date	Confluence of		!	·	
				SW-10 and	Lonfit River	Lonfit River	Leachate	Leachate
				Lonfit River	Upstream	Downstream	Stream South	Stream West
			2/10/98	1	1	1	1	,
	andaoqua		8/11/98	ı	ı	1	1	1
	(total)	mg/L	11/23/98	0.2	ı	ı	0.02J	0.54
	(ignori)		12/98	0.1	~ 0.1	0.1	60.1	0.0
			1/89	<0.1	<0.1	0.1	60.1	60.1
			7/10/98	310	240	350	1300	1300
			8/11/98	210	150	160	1100	1200
S1 0	SQL	mg/L	11/23/98	696	227	247	1200	260
əu			12/98	477	202	250	1150	701
161			1/89	637	190	232	1040	755
Вq			2/10/98	2.1	1.9	2.7	5 6	20
her			8/11/98	2.8	3.2	3.3	22	80
Ю	200	mg/L	11/23/98	36	7	3.3	33	26
			12/98	15	3.2	2.3	33	24
			1/99	24	2.0	1	20	27
			2/10/98	-	1	1.3	ဖ	88
			8/11/98	3.8	3.8	8.5	2.8	13
	TSS	mg/L	11/23/98	ਲ	1	ı	ı	ı
	name of a		12/98	જ	ď	સ	4	12
			1/99	8.0	11	9.0	11	78

Notes:

BOD = biological oxygen demand
mg/L = milligrams per liter
TDS = total dissolved solids
TOC = total organic carbon
TSS = total suspended solids
J = detected below reporting limit (number, If given, is estimated)
<0.1 = not detected (reporting limit listed)
- = not analyzed or not established

Table 2
Historical Groundwater Analytical Data
Ordot Landfill
Territory of Guam
(all results in µg/L)

te Dete GW-1 Municipal Well A-11 Northeast of Sile 11/10/82 <200 3/12/87 41 11/10/82 rd 3/12/87 <20 11/10/82 rd 3/12/87 <10 11/10/82 <100 3/12/87 <0.2 11/10/82 rd 41 11/10/82 rd 43/12/87 cd.0 11/10/82 rd 3/12/87 cd.2 11/10/82 rd 3/12/87 cd.2 11/10/82 rd 3/12/87 rd	Municipal Well A-12 st of Sile st of Sile Northeast of Sile 1 45 1 45 00 <20 00 <20 01 <-10	GW44 (Well 9) Background Well North	GW-5 Downgradient Well	9-M5	V II OVA	Well 8		2
Northwast of Sile		North 77	Designation of the second	(Well 3)			LO-MANI	70-44
akuninum 11/10/82 antimony 11/10/82 antimony 11/10/82 antimony 11/10/82 beryllium 11/10/82 boron 11/10/82 cadmium 11/10/82 cadmium 31/2/87 cakcium 31/2/87 chromium (total) 11/10/82		-#	COUNT	Downgradient Well South	Downgradient Well South	Downgradient Well South	USEPA Well Northwest of Sile	USEPA Well Northeast of Site
3/12/87 antimony 11/10/82 arsenic 11/10/82 beryllium 11/10/82 boron 11/10/82 boron 11/10/82 cadmium 3/12/87 cakcium 3/12/87 chromium (total) 11/10/82		#	=		1	-	1	,
antimony 11/10/82 arsenic 11/10/82 berlum 11/10/82 beryllium 11/10/82 boron 11/10/82 cadmium 11/10/82 cadmium 31/2/87 cakcium 31/2/87 chromium (total) 11/10/82			837	2	831	23	ı	ı
arsenic 3/12/87 bantum 11/10/82 beryllium 11/10/82 boron 11/10/82 cadmium 11/10/82 cadmium 3/12/87 catcium 3/12/87 chromium (total) 11/10/82			1	1		-		
arsenic 11/10/82 beryllium 11/10/82 beryllium 11/10/82 boron 11/10/82 cadmium 11/10/82 cadmium 31/2/87 calcium 31/2/87 chromium (total) 11/10/82		8	8	8	8	8	1	ı
3/12/87 beryfilum 11/10/82 beryfilum 11/10/82 boron 11/10/82 cadmium 11/10/82 calcium 3/12/87 chromium (total) 11/10/82	-	,		1		-		
beryflium 11/10/82 beryflium 11/10/82 boron 11/10/82 cadmium 11/10/82 calcium 3/12/87 chromium (total) 11/10/82		<10	410	40	9	40	ı	ı
3/12/87 beryflium 11/10/82 beron 11/10/82 cadmitum 11/10/82 calcium 3/12/87 chromium (total) 11/10/82	-	1	1			ı	1	
beryfilum 11/10/92 3/12/87 boron 11/10/82 cadmilum 11/10/82 calcium 3/12/87 chromium (total) 11/10/92	20	6	180	5	5	15	;	ı
3/12/87 boron 11/10/82 cadmium 11/10/82 calcium 3/12/87 chromium (total) 11/10/82		ı		1		1		1
boron 11/1/0/82 cadmlum 11/1/0/82 3/12/87 calcium 3/12/87 chromlum (total) 11/1/0/82	1.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ı	1
cadmlum 11/10/82 3/12/87 3/12/87 chromium (total) 11/10/82 3/12/87 3/12/87	06		1		1			
3/12/87 3/12/87 1/1/10/82 3/12/87		ı				1		
3/12/87 n (total) 11/10/82 3/12/87	.3 <4.3	c4.3	44.3	£.3	£,3	2,	1	1
ium (total) 11/10/82 3/12/87	900 113,800	53,930	41,610	85,060	85,060	85,060		,
3/12/87		ı		1	1		1	1
- Carotte	.7	43.7	7.8	43.7	7.69	7.8	ı	1
md 71/10/82 md	1	1	ı	,	1	1		
3/12/87 <6.8	.8 <6.8	≪8.8	<6.8	<6.8	8.8	8.8	1	1
copper <50	- 0:		1	1	,	ı	1	1
3/12/87 6	10	6.3	•	*	*	*		•
Iron 11/10/82 <50	9		ı	,	1			1
3/12/87 75	5 65	124	631	885	895	895	ı	1

Table 2
Historical Groundwater Analytical Data
Ordot Landfill
Territory of Guam
(all results in µg/L)

						андшве	Sample Identification and Location	Location			
	Analyte	Date	GW-1	GW-3	GW-4 (Well 9)	GW-5	GW-6	7 IIOM	8 II-M	10-WM	MW-02
			Municipal Well A-11 Northeast of Site	Municipal Well A-12 Northeast of Site	Background Well North	Downgradient Well South	Downgradient Well South	Downgradient Well South	Downgradient Well South	USEPA Well Northeast of Site	USEPA Well Northeast of Site
	lead	11/10/82	Ą	1	1	0	,	1	,		
		3/12/87	₽	8	₽	8	<5 (5.9)	(5.9)	<5 (5.9)	ŧ	: 1
	magnesium	3/12/87	4,151	3,215	7,491	31,210	59,130	59,130	59.130	•	
	manganese	11/10/82	415	ı	1		ı	,	1		1
		3/12/87	-	4		67	28	82	95	,	. 1
	mercury	11/10/82	5.3	ı			1	ì			1
		3/12/87	<0.2	1.06 j	<0.2	<0.2	<0.2	<0.2	6.2		1 1
	nickel	11/10/82	11	-			1	ı	1		1
		3/12/87	<23	<23	\$	R	83	83	8	1	ı
	potassium	3/12/87	<948	<948	<948	<948	\$48	\$48	<948	1	
티	selenium	11/10/82	22	1	ı	1	1	;	ı		
steM		3/12/87	٧	8	\$	٧	٧	\$	٨	ı	ı
ı	siver	11/10/82	92	ŧ	1	ı		-	1	1	1
		3/12/87	<6.1	<5.1	. <u>6</u>	65.1	£.	5.	 1	ı	ı
	sodium	3/12/87	11,110	8,674	12,680	38,650	62,130	62,130	62,130	1	
	thallium	11/10/82	2	:	1	1			. 1	1	
		3/12/87	<10	<10	410	410	<10	<10	410	ı	1
	æ	11/10/82	2	1	1	ı		1			,
		3/12/87	<17	<17	417	<ا7	417	417	44	ı	ı
	vanadium	11/10/82	PL	-	1	1	1	-	1		'
		3/12/87	3.1	43.1	2.8	3.6	6.9	6.9	9	:	1
	złuc	11/10/82	19	ł		1	•	1	1		
		3/12/87	7	45	22	137	162	162	162	ı	ı

Table 2

Historical Groundwater Analytical Data
Ordot Landfill
Territory of Guam
(all results in µg/L)

- [Sample	Sample Identification and Location	Location			
	Analyte	Date	GW-1	GW-3	GW4 (Well 9)	GW-6	GW-6 (Well 3)	7 HeA	Well 8	MW-01	MW-02
			Municipal Well A-11 Northeast of Site	Municipal Well A-12 Northeast of Site	Background Well North	Downgradient Well South	Downgradient Well South	Downgradlent Well South	Downgradient Well South	USEPA Well Northeest of Site	USEPA Well Northeast of Site
	acetone	11/10/82	-	l	1	-	ı	-		1	
		3/12/87	<10 (4 jb)	3 jb	a p	a e	a jp	3 jb	a te	ı	ı
	2-butanone	11/10/82	\$,	1	ı	1			1	
		3/12/87	<10	10 b	<10	10 b	Q 6	4 6	qi 6	ı	1
	carbon disuffide	11/10/82	\$	1	-	ı	1	1		1	1
		3/12/87	₩	\$	٧	٧	8	8	\$	1	1
	chlorobenzene	3/12/87	\$	\$>	\$	Ą	*9	9	8		
	chloroethane	11/10/82	\$	1	1	1	1	-	1	1	1
	chloroform	7/21/92	1	1	1	ı	1	1	1	2	30 c
*21	1,1-dichloroethane	11/10/82	\$>	ı	1	1	1	-	1		
οA	ethylbenzene	3/12/87	\$>	\$>	۶	₽	8	\$	19	1	1
	2-hexanone	11/10/82	139	-	1	t		t	1	1	ı
	4-methyl-2-pentanone	11/10/82	\$		1	1	t	:			
	methylene chloride	11/10/82	\$	ı	ī	1	1	-	-		
		3/12/87	8	2 jb	Ą	a p	٧	٧	٧	1	ı
	styrene	11/10/82	ŝ	-	ı	1	1	_			
		3/12/87	\$	\$	٧	۶	٧	8	٧	ı	ı
	toluene	3/12/87	\$	1,10	d, L	8	т Ф.	1 jb	4.6	1	- I
	vinyl acetate	11/10/82	\$	1	1	t	t				
	xylenes	3/12/87	\$	٧	v	\$	\$	8	\$,	1

Table 2
Historical Groundwater Analytical Data
Ordot Landfill
Territory of Guam
(all results in µg/L)

						Sample	Sample Identification and Location	Location			
•	Analyte	Date	GW-1	GW-3	GW-4	GW-5	9-M0	Well 4	Well 8	MW-01	MW-02
			Municipal Well A-11 Northeast of Site	Municipal Well A-12 Northeast of Site	Background Well North	Downgradient Well South	(Well 3) Downgradient Well South	Downgradient Well South	Downgradient Well South	USEPA Well Northeast of Site	USEPA Well Northeast of Site
الكسا	dethyl phthalate	11/10/82	<20	1	,	,	1	,	,	1	
رخـ	di-N-butytphthalate	7/21/92	1	ı	1	-	,		,	1	100
*200	2-ethyl-1-hexanol	7/21/92	1	ı	1	-	1			68	
	bis(2-ethythexyl)phthalate	3/12/87	2 Jb	2,10	88	2 jb	5.10	- P	5.0	1	
لن	1(3H) isobenzofuranone	7/21/82		t	1			1	1	9	10
	phenol	3/12/87	<10	5 j	<10	<10	410	410	×10		
	aldrin	68/9	<0.2	-	<0.2	1	40.2	<0.2	<0.2		;
		7/89	<0.2	;	<0.2	1	<0.2	<0.2	<0.2	ı	1
		8/83	<0.2	ı	40.2	ı	40.2	<0.2	<0.2	ı	1
		68/6	40.2	1	<0.2	ı	40.2	<0.2	<0.2	ı	ı
81		10/89	<0.2	ı	<0.2	ı	40.2	<0.2	<0.2	;	1
		11/89	<0.2	1	<0.2	ı	40.2	<0.2	<0.2	ı	ı
 -	BHC-alpha	68/9	<0.16	ı	<0.16		40.16	<0.16	<0.16		1
		2/89	<0.16	1	<0.18	ı	<0.16	<0.16	<0.16	ı	1
		8/83	& .0 8	1	<0.16	ì	<0.16	€0.18	<0.16	ı	1
81		8/8	€ 0.16	ı	-0.16	ı	40.16	<0.16	<0.16	ı	1
bce		10/89	A0.16	ı	40.16	ı	<0.16	<0.16	<0.16	ı	ł
* ss		11/89	<0.16	:	<0.16	ı	<0.16	€0.16	<0.16	ı	1
	BHC-beta	68/8	<0.4	1	4.0>		40.4	40.4	<0.4	-	
Pes		7/89	<0.4	ı	4.0>	1	4.0>	4.0	4.0>	ı	ı
		8/83	<0.4	ì	4.0	ı	40.4	4.0	4.0>	ı	1
		8/88	4.0	1	4.0>	1	40.4	4.0	<0.4	ı	1
		10/89	4.0	1	<0.4	1	40.4	40.4	40.4	ı	ı
1		11/89	4.0	e j	<0.4	1	4.0>	4.0>	40.4	1	ı
144	BHC-delta	6/83	40.2	ı	<0.2	1	40.2	<0.2	<0.2	1	:
		7/89	40.5	ı	<0.2	1	40.2	<0.2	40.2	ı	ı
		8/89	40.5	ı	<0.2	ı	40.2	<0.2	<0.2	ı	ı
	-	848	<0.2	1	<0.2	1	40.2	<0.2	40.2	1	ı
		10/89	<0.2	ı	<0.2	ı	<0.2	<0.2	0.5	1	ı
		11/89	<0.2	-	<0.2	ı	40.2	<0.2	<0.2	ı	t

Table 2
Historical Groundwater Analytical Data
Ordot Landfill
Territory of Guam
(all results in µgL)

						Sample	Sample Identification and Location	Location			
	Analyte	Date	GW-1	GW-3	GW4	S-WD	9-MD	Well 4	Well 8	MW-01	MW-02
			Municipal Well A-11 Northeast of Site	Municipal Well A-12 Northeast of Site	Background Well North	Downgradient Well South	Downgradient Weil South	Downgradient Well South	Downgradient Weil South	USEPA Well Northeast of Site	USEPA Well Northeast of Ste
	BHC-gamma	68/9	<0.2	1	<0.2		40.2	<0.2	<0.2	,	
		7/89	<0.2	ı	<0.2	ı	<0.2	<0.2	<0.2	ı	ı
		8/83	<0.2	ı	<0.2	I	<0.2	<0.2	<0.2	ı	ı
		68/8	<0.2	ı	<0.2	1	<0.2	<0.2	<0.2	ı	ı
		10/89	<0.2	ı	<0.2	ı	<0.2	<0.2	<0.2	ı	ı
		11/89	<0.2	1	<0.2	•	<0.2	<0.2	<0.2	ı	ı
	chlordane-alpha	6,89	4 0.1	1	€0.1	1	1.0	40.1	<0.1	,	1
		7/89	40.1	ı	6.1	1	60.1	60.1	<0.1	ı	ı
		8/89	40.1	ı	1.0	1	60.1	<0.1	<0.1	ı	ı
		69/6	<0.1	ı	£0.1	ı	₽.	<0.1	\$0.1	1	ı
		10/89	40.1	:	6.1	ı	6.1	60.1	٠0.1	1	ı
		11/89	<0.1		<0.1	ı	6.1	40.1	<0.1	ı	:
81	chlordane-gamma	68/9	40.1	1	€0.1	,	60.1	<0.1	<0.1	1	:
b CE		7/89	<0.1	1	1.0	ı	8.	40.1	-0.1	ı	1
B 20		8/83	<0.1	t	1.0	1	6.1	<0.1	€0.1	ı	ı
ppp		8/88	40.1	ı	40.1	ı	6.1	<0.1	6 0.1	ı	ı
204		10/89	40.1	ı	6.	ı	8.	<0.1	<0.1	ı	ı
ı		11/89	<0.1	ı	<0.1	1	8.	40.1	~0.1	ı	ı
	4,4*-DDD	6/83	4.0	t	4.0 >	1	40.4	40.4	<0.4		1
		7/89	4.0>	ı	4.0>	1	4.0	<0.4	40.4	1	ı
		8/83	40.4	1	4.0>	ı	4.0	4.0 ×	40.4	ı	t
		68/6	4.0	1	4.0.4	ı	4.0	¢0.4	<0.4	ı	ı
		10/89	*0.4	:	4.0>	ı	4.0	40.4	40.4	1	ı
		11/89	<0.4	ı	<0.4	-	4.0	<0.4	40.4	ı	1
	4,4'-DDE	6/89	<0.2	1	<0.2	ı	<0.2	<0.2	<0.2	1	
		7/89	<0.2	ı	<0.2	ı	<0.2	<0.2	<0.2	1	ı
		68/8	<0.2	ı	<0.2	ı	<0.2	<0.2	<0.2	1	1
		68/6	<0.2	ı	<0.2	ı	<0.2	<0.2	<0.2	ı	ı
		10/89	<0.2	ı	<0.2	ı	40.2	<0.2	<0.2	ı	1
		11/89	<0.2	1	<0.2	1	<0.2	<0.2	<0.2	i	1

Table 2
Historical Groundwater Analytical Data
Ordot Landfill
Territory of Guam
(all results in µg/L.)

!

						Sample	Sample Identification and Location	cetton			
	Analyte	Date	GW-1	GW-3	GW4	GW-5	9-MO	≯ II®M	8 IIOM	MW-01	MW-02
			Municipal Well A-11 Northeast of Site	Municipal Well A-12 Northeast of Site	(Well 9) Background Well North	Downgradient Well South	(Well 3) Downgradient Well South	Downgradient Well South	Downgradiant Well South	USEPA Well Northeast of Site	USEPA Well Northeast of Site
	4,4'-DDT	68/9	<0.4	-	4.0>	ı	40.4	40.4	<0.4	;	
		7/89	40.4	j T	<0.4	ı	<0.4	40.4	4.0.4	ı	1
		8/89	4.0	ı	4.0>	ı	\$.0>	40.4	<0.4	ı	t
		68/6	40.4	ı	4.0	ı	<0.4	4.0	40.4	1	1
		10/89	<0.4	ı	4·0>	1	<0.4	4.0	4.0	ı	ŀ
		11/89	<0.4		<0.4	ı	<0.4	4.0>	4.0>	ı	ı
	diazinon	68/9	40.4	1	4:0.4	1	40.4	40.4	4.0	-	-
		7/89	<0.4	ı	4.0.4	ı	<0.4	<0.4	4.0>	ı	1
		8789	4.0	1	<0.4	ı	<0.4	4.0>	4.0	1	ŀ
		68/6	4.0>	1	40.4	t	4.0>	4.0>	4.0	ı	ı
*		10/89	4.0>	ı	<0.4	1	4.0>	4.0>	40.4	ı	ı
ьсв		11/89	<0.4	1	<0.4	ı	<0.4	4.0>	4.0>	ı	1
S. S.	dieldrin	11/10/82	<0.1		ı	ı		1	,		,
icide		68/9	<0.2	ı	<0.2	ı	<0.2	<0.2	<0.2	1	
1884		2//89	<0.2	1	40.2	1	<0.2	<0.2	40.2	ι	1
1		8/89	<0.2	ı	<0.2	ı	<0.2	<0.2	<0.2	ı	ı
		68/8	<0.2	ı	<0.2	ı	<0.2	<0.2	<0.2	1	1
		10/89	<0.2	ı	<0.2	1	<0.2	<0.2	<0.2	1	ı
		11/89	<0.2	1	<0.2	_	<0.2	<0.2	4.2	ı	1
	endosulfan sulfate	11/10/82	<0.1	-				1	ı		
	endrin	68/9	<0.2	ı	<0.2	:	<0.2	40.2	40.2	-	ı
		7/89	<0.2	ı	<0.2	1	<0.2	<0.2	0.7	1	1
		8/83	<0.2	1	<0.2	1	<0.2	<0.2	<0.2	l D	ı
		68/6	<0.2	ı	<0.2	ı	<0.2	<0.2	0.5	ı	ı
		10/89	<0.2	ı	40.2	ı	<0.2	<0.2	40.2	1	ı
ı		11/89	<0.2	-	<0.2	1	<0.2	<0.2	<0.2	1	ı

Table 2
Historical Groundwater Analytical Data
Ordot Landfill
Territory of Guam
(all results in µg/L)

		I		2000-		Sample	Sample Identification and Location	Location			
	Analyte	Date	GW-1	GW-3	5W4	GW-5	9-MD	Well 4	Well 8	NW-01	MW-02
			Municipal Well A-11 Northeest of Site	Municipal Well A-12 Northeast of Sits	(Well 9) Background Well North	Downgradient Weil South	(Well 3) Downgradient Well South	Downgradient Weil South	Downgradient Weil South	USEPA Well Northeast of Site	USEPA Well Northeast of Site
	ethion	68/9	<0.4	1	4.0 >		\$.0°	4,0	<0.4	1	
		68//	40.4	1	¢0.4	1	4.0>	4.0	<0.4	ı	1
		8/89	4.0>	ı	4.0	ı	4.0>	4.0	40.4	ı	ı
		68/6	<0.4	ı	4.0	1	4.0>	<0.4	404	ı	I
		10/89	<0.4	ı	4.0	1	<0.4	<0.4	40.4	ı	ı
		11/89	<0.4	1	<0.4	1	4.0	<0.4	40.4	1	1
	heptachlor	6/89	<0.24		<0.24	ī	<0.24	<0.24	<0.24	1	1
		7/89	<0.24	1	<0.24	1	<0.24	<0.24	<0.24	ı	ı
		8/88	40.24	1	<0.24	ı	<0.24	<0.24	<0.24	ı	ı
		68/6	<0.24	1	<0.24	ı	<0.24	<0.24	<0.24	ı	ı
		10/89	<0.24	1	<0.24	1	<0.24	40.24	<0.24	1	ı
		11/89	<0.24	ı	<0.24	1	<0.24	<0.24	<0.24	1	ı
8	malathion	6/83	3	:	3		4	3	3	1	,
PCE		7/89	4	1	2	1	4	3	3	ı	1
B 81		68/8	3	1	3	ı	3	\$	3	ı	ı
icide		8/88	য়	ı	3	ı	3	3	য়	ı	;
1804		10/89	3	1	3	t	3	3	4	ı	1
		11/89	4	-	4	ı	3	3	3	ı	
	methoxychlor	68/9	<0.2	1	<0.2		<0.2	<0.2	<0.2	1	
		7/89	<0.2	4	<0.2	ı	<0.2	<0.2	<0.2	ı	ı
		8/89	<0.2	ı	<0.2	1	<0.2	<0.2	<0.2	1	ı
		68/6	<0.2	ı	\$0.2 2.0	ı	<0.2	<0.2	<0.2	1	1
		10/89	<0.2	1	<0.2	1	<0.2	40.2	<0.2	t	1
		11/89	<0.2	1	<0.2	-	<0.2	<0.2	<0.2	ı	1
	naled	6/88	8	1	8		8	8	8	1	
		2/89	8	ı	8	ı	8	8	8	:	ı
		8/83	8	ı	8	ı	8	8	8	•	ı
	7105	9/83	8	ı	8	ı	8	8	Ÿ		ı
		10/89	8	1	8	ı	8	8	8	t	,
	0.00	11/89	2	ľ	8	ı	Ø	8	8	ì	1

Table 2
Historical Groundwater Analytical Data
Ordot Landfill
Territory of Guam
(all results in µg/L)

- [Sample	Sample Identification and Location	ocation				
	Analyte	Date	GW-1	GW-3	GW-4 (Well 9)	GW-5	GW-6	Well 4	Well 8	MW-01	MW-02	
- 1			Municipal Well A-11 Northeast of Site	Municipal Well A-12 Northeast of Site	Background Well North	Downgradient Well South	Downgradient Weil South	Downgradient Well South	Downgradient Well South	USEPA Well Northeast of Sits	USEPA Well Northeast of Site	
	parathion, ethyl	6/83	8	1	8		\$	8	8		1	
		7/89	8	ı	8	ı	8	8	8	ı	ı	
		8/89	8	1	8	ı	8	\$	8	ı	ı	
		68/6	8	ı	8	ı	8	8	8	,	1	
8	2240	10/89	8	1	8	1	8	Q	7	ı	ı	
BCB		11/89	8	-	۵		8	8	8	ı	1	
3 81	parathion, methyl	68/9	8	1	8	1	8	8	8	,	-	
epp:		7/89	8	ı	8	ı	8	8	8	ı	ı	
dae9		8/89	8	ı	8	1	8	8	8	ı	ı	
ı		8/88	8	1	8	ı	à	8	8	1	ı	
		10/89	8	t	8	1	8	8	8	ı	ı	
		11/89	8	1	8		8	8	8	ı	ı	
	PCB-1242	11/10/82	₽.0	1	t	,	-		1	1	;	
ı					•			•				

Historical Groundwater Analytical Data Ordot Landfill Territory of Guam (all results in µg/L) Table 2

						Sample	Sample Identification and Location	-ocation			
	Analyte	Date	1-W0	C-MD	GW-4	GW-5	gw-6	Well 4	Well 8	MW-01	MW-02
			Municipal Well A-11 Northeast of Site	Municipal Well A-12 Northeast of Sits	(well b) Background Well North	Downgradient Well South	(Well 3)	wngradiant Well South	Downgradient Well U	USEPA Wall Northeast of Site	USEPA Well Northeast of Site
	cyanide	3/12/87	<10	16	410	40	<10	410	₽	,	'
eritO ems	Hd.	11/10/82	6.9	1	1	1	ı	,	,		
ne4		3/12/87	6.75	6.71	7.26	6.27	8.8	6.8	8.9	1	ı

Sampling Dates: 11/10/82

6/89 through 11/89

7/21/92

3/12/87

Rafatzances for Data:
Black & Vestch. 1983. Remedial Investigation, insular Territory Hazardous Waste Siles, Draft Report. May 20.
Camp, Dresser & McKee, Inc (CDM), 1987. Final Initial Site Characterization Report, Ordot Landfill, Island of Guenn. November 18.
Water and Environmental Research Institute (WERI) of the Western Peatific University of Guenn. 1989. The Occurrence of Certain Peaticides in Ground and
Surface Watern Associated with Ordot Landfill in the Pego River Beath, Guenn Mariana Islanda. Technical Completion Report No. 72. November.
URS Consultants, 1992, Monitoring Well Installation and Sampling Field Forms, October 29.

Sample identification given in parentheses is for the corresponding sample location from the 1889 pesticide investigation (WERI).

Top semple identification is nomenclature used during all other investigations.

Notes: Detacted concentrations are shown in bold.

Concentrations in parentheses are for corresponding duplicate sample, where primary sample result was non-detect and duplicate sample was not.

- = not analyzed or not established VOCs = votatile organic compounds SVOCs = semi-votatile organic compounds µg/L = micrograms per liter

b = constituent also detected in method blank, indicating laboratory contamination c $\tt x$ analys detected in field blank d = field blank not tested

c = not detected (reporting limit listed)
nd = not detected
d
| = detected below reporting limit (number, if given, is estimated)

PCBs = polychlorinated biphenyls

Table 3
Historical Sediment Analytical Data
Ordot Landfill
Territory of Guam
(all results in mg/kg)

			w	Sample Identification and Location	tion and Locativ	E0	
Analyte	Date	88-1	88-3	8.68	58-7	8-88	83-11
		Lorift River Upstream	Leachate Stream West	Leachate Stream South	Leschats Pond South	Leachate Stream Southeast	Lonft River Downstream
aluminum	Nov-82	13,700	7,440	21,500	12,200	12,900	14,000
antimony	Nov-82	<1	<1 (1.2)	٧	-	٥	₹
arsenic	Nov-82	0.9	0.5	1.1	9.0	0.0	6.0
barlum	Nov-82	252	91	1.84	38	22.9	129
beryllium	Nov-82	0.3	<0.3	<0.3	<0.3 (0.3)	40.3	0.2
boron	Nov-82	16.7	23.8	۳	18.8	15	4
cadmium	Nov-82	0.05	0.1	<0.05	0.1	0.2	0.05
chromium (total)	Nov-82	30.8	16.4	46.1	24.3	20.3	24.1
cobalt	Nov-82	25.2	44	14.8	15.3	6.9	19.3
copper	Nov-82	33.7	23.7	29.7	30.5	26.2	28.9
iron	Nov-82	19,400	13,000	36,600	14,900	14,600	20,800
manganese	Nov-82	1,370	2,350	936	360	373	402
lead	Nov-82	12	32	6.8	*	2	F
mercury	Nov-82	3.2	2.6	4.4	3.1	22	1.1
nickel	Nov-82	<2 (52.3)	22.1	26.4	26.4	17.2	37
selenium	Nov-82	pu	pu	P	Pe	2	5
silver	Nov-82	pu	pu	믿	ы	5	뒫
thalltun	Nov-82	ы	Ы	맡	P	Þ	뒫
tin	Nov-82	۲	<1 (1.4)	1.7	v	<1 (1.2)	₹
vanadium	Nov-82	47.7	27.8	58.2	42.3	30.8	34.6
zinc	Nov-82	26.2	<0.5 (108)	35.5	53.8	84.6	u

References for Data: Black & Vestch. 1983. Remedial Investigation, Insular Territory Hazardous Waste Stas, Draft Report . May 20.

Defected concentrations are shown in bold.

Concentrations in parentheses are for corresponding duplicate sample, where primary sample result was non-detect and duplicate sample was not.

mg/kg = miligrams per kilogram

<5 = not defected (reporting limit listed)

Table 3A Historical Sediment Analytical Data With Organic Compounds Ordot Dump Territory of Guam (all results in ug/kg)

					Sample Identifica	Sample Identification and Location	5	
			SS-1	SS-3	SS-5	SS-7	6-SS	SS-11
			i •				Leachate	
		Sample	Lonfit River	Leachate	Leachate	Leachate Pond	Stream	Lonfit River
Analysis	Analyte	Date	Upstream	Stream West	Stream South	South	Southeast	Downstream
sl	acetone	11/82	<50	0 5>	<50	<50	<50	\$ 20
oun	chlorobenzene	11/82	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
odw	chloroethane	11/82	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
	fluorotrichloromethane	11/82	6.8 (7.6)	<2.5	11.3 (12.2)	<2.5	<2.5	<2.5
anic OO	methylene chloride	11/82	35.6 (11.0)	80.5 (30.6)	30.6 (54.6)	37.0 (67.0)	55.8 (64.8)	29.0 (25.0)
	o-xylene	11/82	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
əlit	styrene	11/82	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
elo/	1,1,2,2-tetrachloroethane	11/82	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
	toluene	11/82	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
səpi	BHC-Gamma	11/82	<4.0	<4.0	<4.0	64.0	<4.0	4.0
stic	dieldrin	11/82	<4.0	<4.0	<4.0	<4.0	22.6 (35.2)	4.0
₆ 4	heptachlor epoxide	11/82	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
	aniline	11/82	<400	<400	<400 (2,002)	<400	<400	<400
	benzo (a) anthracene	11/82	<400	<400	<400	<400	<400	400
	bis (2-ethylhexyl) phthalate	11/82	<400	<400	<400	<400	1,396 (1,524)	<400
	butyl benzyl phthalate	11/82	972 (<400)	<400	3,240 (<400)	<400 (1,800)	2,513 (8,001)	<400
	chrysene	11/82	<400	<400	<400	<400	<400	<400
	diethyl phthalate	11/82	<400	<400	<400	<400	<400	<400
A\ea	di-n-octyl phthalate	11/82	<400	<400	<400	<400	<400	<400
sa Orga	fluoranthene	11/82	<400	<400	<400	<400	<400 (1,676)	<400
2	pyrene	11/82	<400	<400	<400	<400	<400 (1,674)	<400

Notes:
mg/kg = micrograms per kilograms
J = detected below reporting limit (number, if given, is estimated)
<2.5 = not detected (reporting limit listed)
Concentrations in parentheses are for corresponding duplicate sample.

Page 1 of 1

APPENDIX C

USGS Project Synopsis Report, June 2003.

Impact of Ordot Dump on Water Quality of Lonfit River Basin in Central Guam

USGS PROJECT SYNOPSIS REPORT, JUNE 2003

Title: Impact of Ordot Dump on Water Quality of Lonfit River Basin in Central Guam

Principal Investigators: Gary R.W. Denton, Mohammad Golabi, and H. Rick Wood

Problem and Research Objectives

Guam's only municipal solid waste disposal site is centrally located in the village of Ordot and has been in use for over fifty years. Lacking in the conventional technology built in to modern day sanitary landfills, the site is essentially an open dump covering ~20 acres of the upper Lonfit River valley. The dump was operated by the US Navy at the end of WWII and transferred to the Government of Guam shortly thereafter. Although slated for closure more than 20 years ago, it still receives around 200 tons of solid waste per day from the civilian community. Early records of the types of materials disposed of at the Ordot Dump are nonexistent but are suspected to include the same array of toxic chemicals found at other military dumpsites on island. Today, there is some control over the bulk disposal of industrial chemicals, waste oil, and metallic waste at Ordot Dump. However, household waste is rarely screened and is known to contain a variety of hazardous substances, both biological and chemical. Leachate streams occur in several places around the perimeter of the dump and course their way down gradient into the Lonfit River and out into Pago Bay. Their chemical composition is largely unknown and their impact on the local environment in terms of ecology, agriculture, and human health remains to be investigated.

The objectives of this project were to characterize the primary biological and chemical contaminants in leachate water emanating from the Ordot Dump and trace their respective movements down the watershed and out into the ocean. This was accomplished by examining surface water and soil interstitial waters at discrete locations between the dump and the coast to determine the distribution and abundance of primary contaminants and identify their differential mobilization rates in surface and subsurface environments.

Methodology

Leachate samples were collected from two separate locations on the southern face of the dump and sent off-island for a one-time analysis of all priority pollutants listed under *Guam Water Quality Standards* (GEPA 2001). The high cost of this analysis precluded further testing.

Surface water samples were taken at monthly intervals from five sites along the Lonfit/Pago river systems between the dump and the ocean. These were analyzed for total coliforms and fecal indicator bacteria (*E. coli* and *Enterococci*), nutrients (NOx, NH₄-N and orthophosphate-P) and heavy metals (Ag, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn). Samples for nutrient and heavy metal analyses were withdrawn directly into 50 ml polypropylene syringes and filtered through in-line 0.45 µm filters into 100-ml plastic vials.

Monthly subsurface water samples were taken from five sites around the western edge and southern toe of the dump. These were collected using suction cup lysimeters buried to depths of 2, 4 and 6 feet below ground level. Samples were removed from the lysimeters under vacuum and analyzed for bacteria, nutrients and metals without further treatment.

All surface and subsurface water samples were stored on ice in the field. In the laboratory, those required for heavy metal analysis were acidified with analytical grade nitric acid (100 μ l/l00 ml). All bacteria and nutrient analyses were performed within 6 h and 24-h of collection respectively.

All bacteria counts were made using the Idexx Quantitray® technique. Total coliforms and *E coli* were incubated at 35°C with Colilert® media to their respective color and fluorescent endpoints. *Enterococci* were incubated in Enterolert® at 41°C to a fluorescent endpoint.

Nutrient determinations were made using a multi-channel Flow Injection Analyzer (FIA) (Quickchem 800: Lachat Instruments). The analytical methods were those recommended by the manufacturer and are essentially the same as those described in *Standard Methods*, Part 4500 (APHAWW 1992) with modifications for flow injection analysis. The heavy metal analyses were carried out by conventional flame and flameless atomic absorption spectrometry.

Principal Findings and Significance

Leachate:

The biological and chemical contaminants detected in the leachate samples are listed in Table 1 together with the appropriate surface water and safe drinking water quality standards for Guam. Especially noticeable are the extremely high counts of fecal indicator bacteria, which exceeded the Guam recreational water quality standards by at least three orders of magnitude. Presumably, these elevated numbers reflect unsanitary human wastes (e.g. disposable diapers) and animal carcasses placed in the dump as well as fecal contributions from the large populations of rodents, stray dogs and wild pigs in the area.

Of the 27 chemical contaminants detected in the leachate samples, 12 were found at levels that exceeded one or both of the water quality standards. Nutrient levels were particularly high, especially NH₄-N. In fact, the pungent small of ammonia was very noticeable at one of the leachate collection sites. Copper and Pb were also high in one of the samples compared with their respective surface water quality standard. Both metals are relatively toxic to aquatic organisms. Levels of all detectable metals were several orders of magnitude over and above those normally encountered in uncontaminated river waters (Denton et al. 1998).

It is interesting to note that relatively few organic solvents were found in the leachate and no pesticides other than p-dichlorobenzene. Likewise, no PCBs, PAHs, dioxins or furans were detected in either sample.

Bacteria:	Units	Results	Guam Water Qu	ality Standards
Energia:	Onto	resuits	Surface Waters *	Drinking Water
Bacteria:				
Total Coliforms	MPN Index/100 ml	2,419,200	_	0
E. coli	MPN Index/100 ml	137,400	126	ŏ
Enterococci	MPN Index/100 ml	298,100	33	Ö
Nutrients:				
NOx	µg/l	604	100-500 b	10, 1 °
NH ₄ -N	mg/l	503	3.08 d	10, 1
Ortho-P	µg/l	166	25-100	-
Metals (total):				
Aluminium	μg/l	1600 - 4,500	1000	50-200
Antimony	μg/l	9.7	-	6
Arsenic	mg/l	0.007 - 0.046	0.15	0.01
Barium	μg/l	85 - 240	•	2000
Boron	mg/l	1.6 - 5	-	-
Chromlum	mg/l	0.017 - 0.210	0.210 4,1	0.1
Copper	mg/l	0.023 - 0.092	0.012 1	1.3
iron	mg/l	0.68 - 2.9	3.00	0.3
Lead	μg/l	4.7 - 45	3.20	15
Manganese	µg/l	290 - 340	-	50
Nickel	mg/l	0.050 - 0.110	0.052 ^f	0.1
Vanadium	µg/l	26 - 62	0.052	0.1
Zinc	mg/l	0.083 - 21	0.11 ¹	5
Pesticides:				
p-dichlorobenzene	μg/l	3.4	-	75
Organic Solvents:				
Acetone	µg/l	17	-	-
Benzene	μg/l	3.1	-	5
Ethylbenzene	µg/l	7.3	-	700
Tetrahydrofuran	µg/t	10	-	-
Toluene	µg/l	18	-	100
cis-1,2-Dichloroethane	μg/l	1.1	-	5
m,p-xylenes	µg/l	8	•	-
o-Xylene	µg/l	3.6	•	-
thers:				
Cyanide	mg/l	0.007 - 0.016	0.0052	0.2
Phenolic Compounds	mg/l	0.074 - 0.155	-	-

a = GWQS for freshwaters only; b = as nitrate nitrogen; c = astrate nitrogen and nitrite nitrogen respectively; d = Criterishronic Concentration (CCC) at pH 7.0 e = CCC for Cr only; f = CCC estimated at total hardness of 100 mg/l; dashes indicate no standards currently available

Table 1: Priority pollutants detected in leachate from Ordot Dump (Dec. '03)

Surface Waters:

The results of the bacterial analysis of surface waters from the Pago-Lonfit River systems are shown in Table 2. As expected, counts for the fecal indicator bacteria, *E. coli* and *Enterococci*, were highest at site 1 near the point of convergence between the river and a major leachate stream. However, these quickly diminished within a few hundred meters downstream and, for *E. coli*, were mostly below the recreational water quality standard at sites 2 and 3. In contrast, the recreational water quality standard for *Enterococci* was exceeded at all sites almost all of the time.

Station #	Distance from		MPN Index/100 mi	
Station #	Discharge Point (m)	Total Coliforms	E. coll	Enterococci
		mean (range)	mean (range)	mean (range)
Leachate Stream	0	2,419,200	137,400	298,100
1	10	38,820 (17,329 - 92,080)	1,553 (391 - 5,012)	4,661 (907 - 17,239)
2	500	11,460 (4,352 - 24,192)	43 (5 - 259)	146 (20 - 703)
3	1,500	1,189 (4,160 - 24,192)	59 (10 - 233)	180 (30 - 816)
4	4,500	17,902 (8,050 - 24,810)	277 (51 - 1,609)	132 (5 - 631)
5	5,000	18,882 (5,850 - 26,130)	441 (20 - 5,794)	153 (20 - 1850)

Table 2: Bacteria in surface waters of the Lonfit-Pago River system (Oct. '02 - May '03)

mean calculated as geometric mean

In general, fecal indicator bacterial counts were poorly correlated with one another both in space and time (Figure 1.). This suggests that they have very different survival times and reproductive capabilities in the environment.

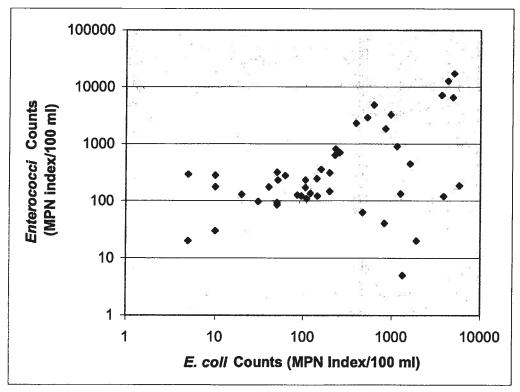


Figure 1: Relationship between *E. coli* and *Enterococci* counts in surface waters of the Lonfit-Pago River System (Oct. '02 – May '03)

On occasions, relatively high fecal indicator bacteria counts were encountered at sites 4 and 5 in the lower reaches of the Pago River and likely reflect seepage from residential

septic tanks in the Pago Bay area. There is also a small sewage treatment plant (aerated sludge system) nearby that services 15 or so houses and allows the effluent to percolate into the ground (Ed Reyes, Guam Waterworks Authority, pers. com.). The data geometric means for both fecal indicators at these sites exceeded the Guam recreational water quality standards.

,

Nutrient enrichment attributable to runoff from the dump was only evident at site 1 and only for inorganic nitrogen (Table 3). Levels determined further downstream were reasonably typical of groundwater impacted streams on Guam (Denton et al. 1998) except at the coast (site 5) where unusually high levels of NOx and NH₄-N were occasionally detected. Such findings again point towards the domestic wastewater inputs in the lower Pago basin area.

The absence of detectable levels of soluble inorganic phosphorus immediately downstream from the dump was unexpected considering the elevated concentration determined in leachate. Presumably, this nutrient is rapidly scavenged from the water column by iron as it changes oxidation state and precipitates out of solution as the hydrated ferric oxide.

Site #	Distance from		Nutrients (µg/i)	
	Discharge Point (m)	NOx-N	Ammonia-N	Orthophosphate-P
		median (range)	median (range)	median (range)
Leachate	0	604	503	166
1	10	2,976 (1,350 - 3,380)	42.2 (41.1 - 43.2)	all <1.0
2	500	358 (229 - 487)	3.1 (1.3 - 6.3)	all <1.0
3	1,500	208 (111 - 305)	3.1 (1.7 - 5.2)	all <1.0
4	4,500	359 (151 - 567)	<1 (<1 - 2.8)	all <1.0
5	5,000	1140 (130 - 10,000)	18 (1.4 - 24.5)	all <1.0

Table 3: Nutrients in surface waters of the Lonfit-Pago River system (Oct. '02 - May '03)

Elevated heavy metal levels in the leachate stream were quickly diluted as they entered the Lonfit River at site 1 and were at normal baseline levels at all sites further downstream (Table 4). Iron and Mn were typically the most common elements detected and were generally followed in decreasing rank order of abundance by Cu>Zn>Pb>Cr and Ni. Levels of Cd, Hg and Ag were consistently below the limits of analytical detection at all sites so far examined.

In all probability, much of the soluble heavy metal load in the leachate stream rapidly partitions out onto suspended particulates upon entering the watershed and ultimately ends up in bottom sediments. These contaminated sediments would be gradually mobilized downstream and dumped in the Pago River estuary and adjacent waters.

It is suggested that sediment cores taken at strategic locations along the Pago-Lonfit River systems and out into Pago Bay would provide a more realistic measure of heavy metal distribution and abundance in this area. Such a sampling program would also provide a better understanding of the potential impact of these contaminants on the biota,

particularly the suspension and deposit feeders and those organisms living in intimate contact with bottom deposits.

Metai -		Site # (c	listance from leachate	stream)	
motor	Leachate (0 m)	1 (10 m)	2 (500 m)	3 (1,500 m)	4 (4,500 m)
	mean (range)	mean (range)	mean (range)	mean (range)	mean (range)
Fe	1404 (680 - 2900)	87.0 (12.0 - 646)	16.8 (4.7 - 33.3)	15.8 (3.8 - 27.8)	14.9 (4.2 - 36)
Mn	314 (290 - 340)	272 (83.3 - 966)	21.5 (8.3 - 52.3)	24.3 (7.3 - 73.8)	27.4 (6.6 - 384)
Cu	46.0 (23.0 - 92.0)	5.6 (1.7 - 31)	0.5 (0.2 - 2.0)	0.4 (0.2 - 1.4)	0.4 (0.2 - 2.2)
Zn	1320 (83 - 21,000)	2.8 (1.2 - 6.2)	0.1 (0.1 - 0.5)	0.1 (0.1 - 0.3)	nc (<0.1 - 1.1)
Pb	14.4 (4.7 - 45.0)	nc (<0.3 - 4.0)	nc (<0.3 - 0.3)	nc (<0.3 - 1.0)	nc (<0.3 - 1.4)
Cd	all <0.1	ali <0.2	all <0.2	all <0.2	all <0.2
Hg	ali <0.1	all <0.3	all <0.3	all <0.3	all <0.3
Ag	ail <0.1	all <0.1	all <0.1	all <0.1	all <0.1
Cr	59.7 (17.0 - 210)	2.0 (1.1 - 5.0)	nc (<0.3 - 0.9)	nc (<0.3 - 0.6)	nc (<0.3 - 0.8)
NI	74.2 (50.0 - 110)	12.9 (2.7 - 33)	all <0.6	all <0.6	all <0.6

Table 4: Heavy metals in surface waters of the Lonfit-Pago River system (Oct. '02 - May '03)

A study of this nature should also include the chemical analysis of biotic representatives, particularly key organisms of ecological and economic importance. This would facilitate the identification of critical contaminant pathways and permit a realistic assessment of any potential health risks to those who harvest any of the aquatic resources in this area for food.

Subsurface Waters:

Bacterial counts in soil pore waters down gradient of the Ordot Dump were surprisingly low considering the extremely high numbers present in leachate (Table 5). Even total coliform counts rarely exceeded 200 per 100 ml sample and were mostly around 2 or less per 100 ml sample.

Soil Depth (feet)	No. Samples		MPN Index/100 ml	
oon bepar (reet)	NO. Camples	Total Coliforms	E. coli	Enterococci
		median (range)	median (range)	median (range)
2	32	2 (<2 - 4740)	<2 (<2 - 20)	<2 (<2 - 400)
4	30	2 (<2 - 7016)	<2 (<2 - 11)	<2 (<2 - 31)
6	36	2 (<2 - 4838)	<2 (<2 - <10)	<2 (<2 - 10)

Table 5: Bacteria in soil pore waters down gradient from Ordot Dump (Oct. '02 – May '03)

Both fecal indicator bacteria were rarely encountered at counts over 10 per 100 ml sample. Whether this is because bacteria in leachate from the dump are physically trapped in the overlying surface soil layers, or consumed by other soil microbes, or both, remains to be established. In any event, the data imply little to no subsurface movement of bacterial pathogens from the dump into the watershed.

It is interesting to note that the frequency with which *E. coli* and *Enterococci* were detected in soil pore water samples was depth related with the fewer detections at six feet than at two feet (Figure 2). In contrast, total coliforms were encountered in approximately 50% of the samples collected at all three depths. It is also noteworthy that *Enterococci* were detected more often than *E. coli* at all soil depths.

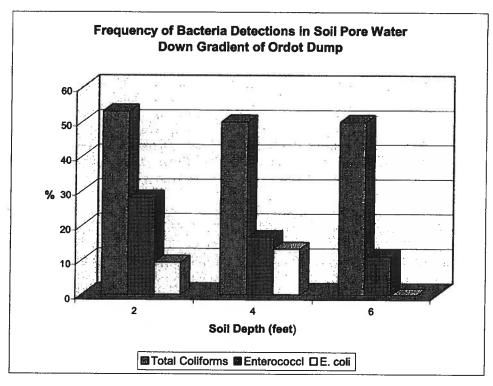


Figure 2: Frequency of bacteria detections in soil pore water down gradient from Ordot Dump (Oct. '02-May '03)

Nutrient levels found in soil pore waters are summarized in Table 6. NOx enrichment was evident in the majority of samples from the shallower depths and occasionally at the deepest level. These findings highlight the mobility of the nitrate anion down through the soil profiles and could account, at least in part, for the relatively lush vegetation growing further down the watershed.

Soil Depth (feet)	No. Samples		Nutrients (µg/I)	
	No. Samples	NOx-N	Ammonia-N	Orthophosphate-P
		median (range)	median (range)	median (range)
2	3	1,270 (339 - 8,124)	5.8 (2.9 - 6.0)	2.9 (1.0 - 16)
4	5	5,990 (10 - 9,510)	32 (2.9 -141)	18 (1.0 - 49)
6	8	740 (5 - 35,455)	11 (4.3 - 35)	8.5 (1.0 - 59)

Table 6: Nutrients in soil pore waters down gradient from Ordot Dump (Oct. '02 - May '03)

Ammonia-N and orthophosphate-P levels were generally low and indicative of a fairly well aerated soil environment at all depths. Both nutrients showed some indication of depth-dependency with the highest levels occurring in samples from the deeper lysimeters. It seems unlikely that the low pore water bacteria counts noted above were related to a nutrient deficiency.

Heavy metal levels in the soil pore water samples have yet to be completed. However, the data thus far collected suggest all elements of interest are at, or close to, the limits of analytical detection with the possible exception of Al, Fe and Mn.

Concluding Remarks and Recommendations:

The results of this preliminary investigation show that leachate streams from the Ordot Dump transport substantial quantities of nitrogen, phosphorus and essential trace elements to the middle reaches of the Lonfit River. The extremely high fecal indicator bacteria content of the runoff also suggests that it could be a major source of human pathogens to the area. The biological impact of relatively high concentrations of certain potentially toxic heavy metals in the leachate requires further evaluation, particularly in the immediate downstream region of the watershed. Edible aquatic resources and potentially useful bioindicator species should be the primary focus of such studies. The subsurface movement of NOx, Al, Fe and Mn from the dump into the watershed is probably considerable. The latter metals could have a significantly negative impact on plant growth down gradient from the dump and warrant further investigation. Concentrations of PCBs, chlorinated pesticides (other than p-dichlorobenzene), PAHs. furans, dioxins, Hg, Cd, and the majority of organic solvents currently classified as priority pollutants by the USEPA, were undetectable in dump leachate and are not considered to be of any immediate importance. However, the continued and regular surveillance of all priority pollutants emanating from the dump is strongly recommended in order to identify any future quantitative and qualitative changes in contaminant concentrations.

References

- Denton, G.R.W., L.F. Heitz, H.R. Wood, H.G. Siegrist, L.P. Concepcion, and R. Lennox, (1998). Urban Runoff in Guam: Major Retention Sites, Elemental Composition and Environmental Significance. Water and Environmental Research Institute (WERI) of the Western Pacific Technical Report No. 84,. 212 pp.
- Guam Environmental Protection Agency (2001). Guam Water Quality Standards, 2001 Revision. 126 pp.
- Standard Methods for the Examination of Water and Wastewater (1992), 18th Edition.

 American Public Health Association, American Waterworks Association, Water Pollution Control Federation.