NATIONAL GOVERNORS' ASSOCIATION

Working Group on State Initiatives in Applied Research

Conference Proceedings April 28-29, 1988

Meeting Location: Hall of the States 444 N. Capitol Street, N.W. Washington, D.C. 20001

Organized By:

The State of Ohio Governor Richard F. Celeste NGA Lead Governor on Science and Technology, in cooperation with the National Governors' Association

inki

ROUTING AND TRANSMITTAL SLIP

FROM: 41 DATE		DO	DOCUMENT NUMBER	
TO:			1.	
I.	GOVERNOR	1.	Action	
2.	LIEUENTANT GOVERNOR	2.	Approval	
3.	SPECIAL ASSISTANT FOR EXECUTIVE DIRECTION	3.	As Requested	
4.	COMMUNICATION	4.	Circulate	
5.	GOVERNMENT REORGANIZATION	5.	Clearance	
6.	HEALTH, EDUCATION & HUMAN RESOURCES	6.	Comment	
7.	UTILITIES, TRANSPORTATION & PHYSICAL INFRASTRUCTURE	7.	Coordinate	
8.	NATIONAL AND INTERNATIONAL AFFAIRS	8.	File	
9.	COMMUNITY AFFAIRS	19.	For Information	
10.	LEGAL COUNSEL	10.	Justify	
11.	CFO	11.	Per Conversation	
12	BBMR	12.	Prepare Reply	
3.	BOP	13,-	Prepare Reply for Governor	
14.	RSVP	14.	Prepare Reply for Lt. Governor	
		15.	Redraft	
B		16.	Retype	
		17.	Review	
		18.	See Me	
		19.	Signature	

THE SECRETARY OF COMMERCE Washington, D.C. 20230

Honorable Joseph Ada Governor of Guam Agana, Guam 96910

Dear Governor Ada:

The Omnibus Trade and Competitiveness Act of 1988 calls for a nationwide study of state technology extension services and for a report of findings to the Congress along with recommendations on an appropriate Federal Government role in encouraging such programs. The study is being carried out by the Department of Commerce's National Institute of Standards and Technology in conjunction with the National Governors' Association (NGA).

The intent of the study is to document programs in your state that are involved in reaching out to help small and medium-sized businesses solve technical problems or to help them gain access to new technology. The study will also focus on the degree to which the officials administering these programs are aware of or use Federal programs having similar goals. In addition to meeting the Congressional mandate, the study will provide information for the NGA Task Force on Research and Technology, chaired by Governor John R. McKernan of Maine, which is examining the state role in expanding U.S. markets by capitalizing on emerging technologies. The Task Force is interested in identifying state policies and programs aimed at promoting the commercialization of new technologies.

A questionnaire requesting information on your state programs has been sent to your designee to the NGA Working Group on State Initiatives in Applied Research. Governor Dick Celeste of Ohio has taken a lead role in focusing Governors' attention on science and technology and the Working Group has been a very useful resource. Therefore, we are asking the members of the Working Group to serve as state coordinators, gathering data from the various state agencies that provide technological assistance to businesses.

We urge your support to assure that the study and the resulting report to Congress accurately reflect your state initiatives. Thank you very much for your cooperation.

Sincerely,

C. William Verity
U.S. Secretary of Commerce

Ch clean Verty

Governor Gerald L. Baliles Chairman, National Governors'

GOVERNOR'S

Association

cc: State Designee to the Working Group

STATE OF OHIO OFFICE OF THE GOVERNOR

COLUMBUS 43266-0601

NATIONAL GOVERNORS' ASSOCIATION

WORKING GROUP ON
STATE INITIATIVES IN APPLIED RESEARCH

List of Members

Alabama
Mr. Fred Braswell, III
Director
Alabama Department of Economic
and Community Affairs
3465 Norman Bridge Road
Montgomery, AL 36105-0939

(205) 261-3572

Alaska
Dr. Henry Cole
Special Assistant for
Science and Technology
Office of Management and Budget
Division of Policy
P.O. Box A
Juneau, AK 99811

(907) 465-3568

Arkansas
Dr. John Ahlen
President
Arkansas Science and Technology
Authority
100 Main Street, Suite 450
Little Rock, AR 72201

(501) 371-3554

California
Mr. Kenneth Gibson
Executive Director
Department of Commerce
1121 L Street, Suite 600
Sacramento, CA 95814

(916) 332-1394 Fax: (916) 322-3524 Colorado
Mr. Randy Harrison
Deputy Project Manager
Colorado SSC Project
One United Bank Building
1700 Lincoln Street, Suite 3720
Denver, CO 80203

(303) 839-3960

Connecticut

Dr. Jacob Goldman

President

Connecticut Academy of

Science and Engineering

c/o GB Energy Systems, Inc.

181 Main Street

Norwalk, CT 06851

(203) 846-0714 Fax: (203) 597-9762

Delaware
Dr. Alfred J. Restaino
Executive Director
Governor's High Tech Task Force
802 French Street
Carvel Building
Wilmington, DE 19801

(302) 571-3202

Florida
Mr. Ray Iannucci
Executive Director
Florida High Technology and
Industry Council
Room 501-A, Collins Building
107 West Gaines Street
Tallahassee, FL 32399-2000

(904) 487-3134 Fax: (904) 487-0526 Georgia

Mr. Thomas Lewis Senior Executive Assistant Office of the Governor 201 State Capitol Atlanta, GA 30334

(404) 656-6870

Guan

Mr. Peter P. Leon Guerrero Acting Director Bureau of Planning P.O. Box 2950 Agana, Guam 96910

(671) 472-4201

<u>Hawaii</u>

Mr. Carl Swanholm
Science and Technology Officer
Department of Business and
Economic Development
P.O. Box 2359
Honolulu, HI 96804

(808) 548-8741 Fax: (808) 523-8637

<u>Idaho</u>

Mr. Richard Tremblay
Administrator
Division of Science and
Technology
Department of Commerce
Hall of Mirrors, 2nd Floor
700 West State
Boise, ID 83720

(208) 334-2470 Fax: (208) 334-2631 Illinois
Mr. John Straus
Executive Director

Governor's Commission on Science and Technology 100 West Randolph Street Suite 3-400 Chicago, IL 60601

(312) 917-3982 Fax: (312) 917-6732

<u>Indiana</u>

Mr. Steven Gage
President
Indiana Corporation for
Science and Technology
One North Capitol
Suite 925
Indianapolis, IN 46204-2242

(317) 635-3058 Fax: (317) 232-4146

<u>Iowa</u>

Mr. Doug Getter
Bureau Chief
Business/Targeted Small
Business Development
Iowa Department of Economic
Development
200 E. Grand Avenue
Des Moines, IA 50309

(515) 281-3036 Fax: (515) 281-6611

Kansas

Mr. William Brundage
President
Kansas Technology Enterprise
Corporation (KTEC)
400 Southwest 8th Street
5th Floor
Topeka, KS 66603

(913) 296-5272 Fax: (913) 296-5055 Kentucky
Mr. William Lomicka
Secretary
Commerce Cabinet
Capitol Plaza Tower
24th Floor
Frankfort, KY 40601

(502) 564-7670 Fax: (502) 564-3256

Maine
Ms. Patricia Tanski
Executive Director
Maine Science and
Technology Board
One Memorial Circle
Augusta, ME 04330

(207) 622-6345

Maryland
Mr. James Peiffer
Director
Business and Industrial
Development
Department of Economic and
Employment Development
45 Calvert Street
Annapolis, MD 21401

(301) 974-3514 Fax: (301) 974-2628

Massachusetts
Ms. Megan Jones
Executive Director
Massachusetts Centers of
Excellence Corporation
9 Part Street
Boston, MA 02108

(617) 727-4929

Michigan
Dr. James Kenworthy
Manager, Research and
Technology Programs
Michigan Strategic Fund
Michigan Dept. of Commerce
Law Building, Third Floor
525 West Ottawa
Lansing, MI 48933

(517) 373-7550

Minnesota
Ms. Beverly Jones
Executive Director
Office of Science and
Technology
900 American Center Building
150 E. Kellogg Boulevard
St. Paul, MN 55101

(612) 297-4368 Fax: (612) 297-4367

Mississippi
Mr. James Reidy
Chairman
Department of Physics
University of Mississippi
University, MS 38677

(601) 232-5322

Missouri
Mr. John Johnson
Executive Director
Missouri Corporation for
Science and Technology
High Technology Program
P.O. Box 118
Jefferson City, MO 65102

(314) 751-3906 Fax: (314) 751-5183 Montana

Mr. Samuel Hubbard
Executive Director
Montana Science and Technology
Alliance
46 N. Last Chance Gulch
Suite 2B
Helena, MT 59620

(406) 449-2778 Fax: (406) 444-2808

Nevada

Mr. Andrew Grose
Executive Director
Commission on Economic
Development
Capitol Complex
Carson City, NV 89710

(702) 885-4325

New Hampshire
Mr. Wallace E. Stickney
Commissioner
New Hampshire Department of
Transportation
John O. Morton Building
Hazen Drive

(603) 271-3734

Concord, NH 03301

New Jersey

Mr. Edward Cohen
Executive Director
New Jersey Commission on
Science and Technology
122 West State St. CN-832
Trenton, NJ 08625-0832

(609) 633-2740 Fax: (609) 292-5920 New Mexico
Mr. John Dendahl
Secretary
Economic Development and
Tourism Department
Joseph Montoya Building
1100 St. Francis Drive
Sante Fe, NM 87503

(505) 827-0381 Fax: (505) 827-0407

New York

Mr. H. Graham Jones
Executive Director
New York State Science and
Technology Foundation
99 Washington Avenue
Suite 1730
Albany, NY 12210

(518) 474-4348

North Carolina
Dr. Earl MacCormac
Executive Director
North Carolina Board of
Science and Technology
Office of the Governor
116 West Jones Street

(919) 733-5811 Fax: (919) 733-5166

Raleigh, NC 27611

North Dakota

Dr. Don Mathsen
Associate Dean
School of Engineering and Mines
University of North Dakota
213 Harrington Hall
University Station
P.O. Box 8103
Grand Forks, ND 58202

(701) 777-3132 Fax: (701) 777-5181 Ohio
Mr. Christopher Coburn
Science and Technology
Advisor
Office of the Governor
65 E. State Street
Suite 200
Columbus, OH 43266-0330

(614) 466-3086 Fax: (614) 644-5758

Oklahoma
Dr. Carolyn Wendel Smith
Interim President
Oklahoma Center for Advancement
of Science and Technology
6601 Broadway Extension
Oklahoma City, OK 73116

(405) 841-5139

Oregon
Dr. S. John Owen
Chairman
Department of Electrical and
Computer Engineering
Oregon State University
Corvallis, OR 97331

(503) 754-3617

Pennsylvania
Mr. Jacques Koppel
Executive Director
Ben Franklin Partnership
464 Forum Building
Harrisburg, PA 17120

(717) 787-4147 Fax: (717) 234-4560 Puerto Rico
Mr. William Ocasio
Executive Director
Governor's Economic Advisory
Council
Commonwealth of Puerto Rico
P.O. Box 42001
San Juan, PR 00940-2001

(809) 722-8660 Fax: (809) 726-1440

Rhode Island
Mr. Bruce Lang
Executive Director
Rhode Island Partnership for
Science and Technology
7 Jackson Walkway
Providence, RI 02903

(401) 277-2601 Fax: (401) 277-2102

South Carolina
Dr. Robert Henderson
Executive Director
South Carolina Research
Authority
P.O. Box 12025
Columbia, SC 29211

(803) 799-4070 Fax: (803) 252-7642

South Dakota
Dr. Ernest Buckley
Special Advisor to the
Board of Regents
Kneip Building
Pierre, SD 57501

(605) 773-3455

Tennessee
Dr. John Crothers
Director
High Technology Development
Division
Department of Economic and
Community Development
320 6th Avenue North
Rachel Jackson Building
6th Floor
Nashville, TN 37219-5308

(615) 741-5070

Texas
Mr. Richard Thomas
Director of State Affairs
Office of the Governor
State of Texas
P.O. Box 13561
Austin, TX 78711

(512) 463-1814

Utah
Dr. Randy Moon
Science Advisor
State of Utah
Office of Planning and Budget
116 State Capitol
Salt Lake City, UT 84114

(801) 538-1038 Fax: (801) 533-5231

Vermont
Mr. Elbert Moulton
Secretary
Agency of Development and
Community Affairs
109 State Street
Montpelier, VT 05602

(802) 828-3211

Virginia
Dr. Barry Holt
Director for Technology
Commercialization
Center for Innovative
Technology
The Hallmark Building
13873 Park Center Road
Suite 201
Herndon, VA 22071

(703) 689-3020

Virgin Islands
Dr. Darshan Padda
Vice President for Research
and Land-Grant Programs
University of the Virgin
Islands
RR #2, Box 10,000
Kingshill, St. Croix
U.S. Virgin Islands 00850

(809) 778-0246 Fax: (608) 267-2829

West Virginia
Mr. John Smolak, III
Assistant Director
Industrial Development
Governor's Office of Community
and Industrial Development
Building 6, Room B-517
State Capitol Complex
Charleston, WV 25305

(304) 348-2234 Fax: (304) 348-8887 Wisconsin
Dr. Rolf Wegenke
Administrator
Division of Economic and
Community Development
Wisconsin Dept. of Development
123 West Washington Avenue
P.O. Box 7970
Madison, WI 53707

(608) 266-3203 Fax: (608) 267-2829

Wyoming
Dr. James Speight
Chief Scientific Officer/
Executive Vice President
Western Research Institute
P.O. Box 3395
University Station
Laramie, WY 82071

(307) 721-2209

The following states do not have official representatives on the NGA Working Group on State Initiatives in Applied Research. The survey form was sent to the following people.

ARIZONA

Karen Scates
Intergovernmental Representative
Governor's Office
State House
Phoenix, Arizona 85007

LOUISIANA

Len Sanderson Chief of Staff Governor's Office P.O. Box 94004 Baton Rouge, Louisiana 70804

NEBRASKA

Huston Carlyle Chief of Staff Governor's Office State Capitol Lincoln, Nebraska 68509

WASHINGTON

Jim Brickner Senior Staff Consultant Office of Financial Management 100 Insurance Building MS: AQ-44 Olympia, Washington 98504

STATE OF OHIO OFFICE OF THE GOVERNOR

COLUMBUS 43266-0601

MEMORANDUM

TO: NGA Working Group on State Initiatives in Applied Research

FM: Chris Coburn

DT: September 15, 1988

RE: Enclosed Documents *

This packet contains information from our last NGA Working Group meeting and materials for our next meeting which will be held on September 29-30, 1988, in Washington, D.C.

The proceedings of our last meeting are bound in the enclosed document. Presentations were summarized either in the form of minutes or, in most cases, as reproductions of speakers' overheads and papers.

The second item is a copy of a letter that was sent from Governor Richard F. Celeste to your governor on June 14, 1988, encouraging your state's participation in the Federal Demonstration Project. As you will recall, the purpose of this project is to reduce bureaucratic red tape in the administration of research grants at U.S. universities.

For discussion at our next meeting, I have enclosed a summary of a draft proposed agreement between the Working Group and the National Science Foundation regarding ways to share Science and Technology Center proposal evaluations with the states. The subcommittee which was formed at our last meeting did an excellent job developing this agreement. Please look it over. A discussion on the proposal will be held during our meeting on Thursday, September 29, in the afternoon.

As a reminder, the meeting will be held in room 543 of the National Science Foundation building. If you have not already made your hotel reservation, the enclosed list of hotels are within walking distance of the NSF.

I look forward to seeing you on September 29.

MECHANISMS TO INCREASE NSF/STATE COORDINATION AND COLLABORATION IN SCIENCE AND TECHNOLOGY CENTERS

As part of a broader effort to increase coordination and collaboration between the States and the National Science Foundation, this document outlines mechanisms to ensure optimal use is made of the information gleaned during the review of proposals submitted to NSF's Science and Technology Research Centers (STC) Program.

Background:

There has been a significant increase over the past five years in both Federal and State investments in university-based organized research units (centers and institutes). At times State and Federal efforts have been well coordinated; at times they have not. Included among the costs of poor coordination has been duplication of effort in reviewing the same proposal sent to both Federal and State agencies. As NSF is completing the review of the first set of proposals submitted to its STC Program, we see a major opportunity to capitalize on that review process -- to maximize support for the best proposals and to minimize duplication of review efforts.

Assumptions:

- o NSF and the States share interests in promoting science, engineering, and technology research. The specifics of their interests, however, are not fully congruent. Therefore, NSF and the States will by necessity differ at times in which activities or fields they wish to support, even if everyone agrees on the absolute quality level of particular proposals.
- Tremendous effort and expense will have been expended in reviewing proposals submitted to NSF's STC Program, and much information will have been collected about specific proposals. NSF's sharing this information with the States could save a tremendous amount of duplicate effort.
- The major impediment to immediately sharing the outcome of the NSF STC review process is NSF's need to protect the confidentiality of proposers and proposals. Therefore, permission would have to be secured from proposers to share information about their proposals.

The Mechanism:

Step 1: States will have the option to remove themselves from the list for receiving information on the top (30%) STC proposals.

Step 2: Except for those states that have excluded themselves per step 1, NSF will contact the Principal Investigators (PIs) of all proposals rated in the top 30%, seeking permission to include their names, telephone numbers, and proposal titles on a list to be sent to the members of the NGA Working Group on State Initiatives in Applied Research and other potentional supporters.

When the NSF contacts the PIs (in writing), it will make clear that this process is to better insure the coordination of state and federal science and technology investments. There is no guarantee or expectation that states will be prepared to fund any of these proposals or future iterations of these proposals.

The NGA Working Group on State Initiatives in Applied Research will coordinate the transmittal of the list of PIs and proposal titles to the states. The state representative on the Working Group will receive this information unless the state identifies another individual to be the contact person. That individual is responsible for contacting the PI and for keeping copies of reviews received from the PI confidential, consistent with federal and state law.

With the identity of the reviewer removed, NSF peer reviews are automatically sent to the PI who has the discretion of providing them to the state representative.

Step 3: State officials will be responsible for contacting the PIs for further discussion or negotiation if they so choose. In the case of multistate STC proposals, the representative from the PI's state will be responsible for coordinating with his/her counterpart in other states that are major elements of the proposals.

-- Additional Suggestions --

HOTELS IN WASHINGTON, D.C.

The following hotels are within a 15 minute walk of the National Science Foundation:

	Government Single	Rates Double
Lombardy 2019 I Street, N.W. 202/828-2600	\$75.00	\$95.00
State Plaza 2117 E Street, N.W 202/861-8200	\$75.00	N/A
Hampshire Hotel 1310 New Hampshire Ave, N.W. 202/296-7600	\$75.00	\$85.00

STATE OF OHIO OFFICE OF THE GOVERNOR

COLUMBUS 43266-0601

June 14, 1988

The Honorable Joseph F. Ada Governor Territory of Guam Office of the Governor Agana, Guam 96810

Dear Governor Ada:

We have all been concerned with finding ways to enhance the environment for research within our universities. As Lead Governor for Science and Technology at the National Governors' Association, I write to ask you to take the leadership within your state to promote a federal activity designed to improve procedures for administering university research. This effort is consistent with the NGA's policy to increase governmental efficiency.

Federal agencies are now requesting proposals from universities on ways to eliminate unnecessary administrative burdens on sponsored research, thereby enhancing research productivity. A description of the program, called the Florida Demonstration Project, is enclosed. Proposals will be judged, in part, on a plan by the institution to improve its internal administrative procedures for research programs.

Over the past two years, federal R & D agencies joined with the Florida State University System and the University of Miami to demonstrate standardized and simplified approaches to the administration of sponsored research. As indicated in the attached memorandum from the Office of Management and Budget, all agencies now have the authority to use these simplified procedures in supporting research at colleges and universities throughout the United States.

I am urging each governor to bring together appropriate state and university officials to explore ways to improve state policies. In this way, you can build on the efforts already underway at the federal level. Since the due date for proposals is July 15, prompt action will be necessary.

The conduct of research in our universities will benefit from the improved procedures already implemented. The full benefit will come, however, only if federal requirements are extended and are accompanied by comparable changes at the state level. I encourage you to direct attention to this issue by using the Florida Demonstration Project as a model for action in your state.

Best regards,

ICHARD F. CELESTE

Governor

Enclosures

OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET WASHINGTON, D.C. 20503

May 18, 1988

M - 88 - 20

MEMORANDUM FOR THE HEADS OF EXECUTIVE DEPARTMENTS AND

ESTABLISHMENTS

FROM:

Joseph R. Wright, Jr.

Deputy Director

SUBJECT:

Eliminating Unnecessary Administrative Burden on

Sponsored Research

This memorandum provides guidance and instructions to reduce unnecessary administrative burden on sponsored research and to re-establish the Interagency Assessment Committee to oversee the Florida Demonstration Project to reduce overhead costs and increase research productivity.

The Federal Government has streamlined the administration of sponsored research through issuance of the Office of Management and Budget (OMB) Circulars A-21, "Cost Principles for Institutions of Higher Education," and A-110, "Grants and Agreements with Institutions of Higher Education, Hospitals and Other Non-profit Organizations." Nevertheless, grant accounting and administration remain relatively complex for a number of reasons, including the Federal Government's need to ensure public accountability and the financial pressures on universities to recoup all of the indirect costs associated with research. Overhead costs have gone up and productivity has gone down.

In March 1986, five agencies began the Florida Demonstration Project to see if this trend could be reversed. In March 1988, the Presidential Task Force on Regulatory Relief approved the expansion of the Project, beginning October 1, 1988, to include research contracts as well as grants, and to include universities and research facilities outside of Florida.

Agencies which sponsor research are authorized to make routine use, as appropriate, of the most successful subset of the Demonstration procedures:

 Waive most cost related and other administrative "prior approvals" required by OMB Circulars A-21 and A-110, except actions which change the scope or objective of a project, change key personnel, require additional funding, or where specifically required in the award instrument.

- Authorize grantees to incur pre-award costs at their own risk.
- 3. Authorize grantees the authority to initiate a one-time no-cost extension of up to 12 months.
- 4. Authorize grantees to carry forward unobligated balances to subsequent funding periods without prior agency approval.

Agencies will report to OMB by January 1, 1989, on experience using these procedures.

The Departments of Agriculture, Defense, Energy, and Health and Human Services, and the National Science Foundation will continue a Phase II of the Demonstration Project. Other Federal agencies are encouraged to participate as well.

The Interagency Assessment Committee composed of the senior policy officials of the participating agencies will continue to provide general guidance and oversight. Dr. William Raub, Deputy Director, National Institutes of Health, will continue as Chair and periodically report to OMB on the progress of the Demonstration and those developments that affect government-wide policy. Invitations will be extended to the President's Council for Management Improvement (PCMI), the President's Council for Integrity and Efficiency (PCIE) and the Chief Financial Officers (CFO) Council to provide ex-officio representation to the Interagency Assessment Committee.

The institutions currently in the Demonstration (the nine campuses in the State of Florida system and the University of Miami) will continue. The five institutions that participated in the ancillary costs studies (University of California, Columbia University, Johns Hopkins University, State University of New York, and the University of Virginia) will be eligible as well. Each of these institutions will specify their plans and methodology for continued participation.

An additional 10-15 university participants will be selected on a nationally competitive basis. Proposals will be due by July 1 and evaluation and selection by the Interagency Assessment Committee completed by September 1, 1988. The proposals must specify the area or topic for study, the methodology and evaluation criteria, including measurements for research productivity and costs savings.

For further information, contact Jonathan Breul, Financial Management Division, at 395-3050.

II of the current Florida Demonstration Project.

OATES: Evaluation and selection of organizations will be completed about August 15, 1988. Project organization and execution of Phase II agreements will be completed about October 1, 1988. FOR FURTHER INFORMATION CONTACT: Geoffrey Grant. National Institutes of Health, 301–498–5967; William Kirby, National Science Foundation, 202–357–7880: Charles Paoletti. Office of Naval Research, 202–696–4601; Edward Sharp, Department of Energy, 202–588–8192; or Lyn Zimmerman, Department of Agriculture, 202–382–1304.

SUPPLEMENTARY INFORMATION:

Background

In April 1986 NIH, NSF, DOE, ONR, and USDA joined with the Florida State University System and the University of Miami in a demonstration of a standard and simplified research support instrument.

The demonstration was developed by Federal officials with the encouragement of the Government-University-Industry Research Roundtable of the National Academy of Sciences.

The demonstration is testing the efficacy of standardizing and simplifying most Federal grant financial and administrative requirements as a means of enhancing research productivity and reducing administrative burden for Federal agencies and grantees.

The standard research grant being tested differs from the grants issued by most Federal agencies by eliminating most of the current requirements for Federal prior approval of certain expenditure items (foreign travel, permanent equipment, etc.) as long as pertinent grantee administrative systems are adequate. The terms of the Florida Demonstration Project also allow grantees the authority to incur pre-award costs up to 90 days before the effective date of the grant and to extend the period of the grant, if necessary, without Federal approval. Grantees may also determine that all Federally supported research of individual PI's is scientifically related and, if so, may charge available Federal funds to accomplish the work supported by each agency in the most effective way without detailed justifications of such allocations now required by Federal regulations. The Federal agencies continue to approve changes in the scope of the research or of the Principal Investigator.

Based on extensive review of the results of the project to date, an Interagency Assessment Committee

recommended to the Office of
Management and Budget that all
research agencies be authorized to make
routine use of most of the above features
and that the Demonstration be
continued with an enlarged scope and
broader participation. On May 18, OMB
issued a memorandum to all agencies
making these authorities available for
all agencies to apply to many research
awardees, including contractors. The
following solication is intended to
implement the recommendation that the
Demonstration be continued in an
expanded form.

Purpose and Scope

The purpose of this solicitation is to provide a mechanism to expand the scope of the Florida Demonstration Project and to broaden participation in demonstration activities.

Phase II will have the following basic purposes:

- To refine and test further certain features of the Florida Demonstration Project.
- 2. To identify and test or review new features.
- To serve as the basis for the continued development of a model policy for the administration of all fundamental research and related awards.
- 4. To serve as a catalyst for awardee organizations and state government participation in reducing unnecessary or redundant internal and state systems administrative burden.
- 5. To examine the potential effects of administrative requirements on research productivity and/or costs.

Eligibility and Composition of Phase II

This solicitation is open to all organizations which perform or administer Federally sponsored research, or recognized representatives of such organizations. Up to 20 organizations may be selected. Those organizations that participated in Phase I that submit proposals and wish to participate under the same conditions outlined in this solicitation for Phase II will be included.

The selection or organizations is intended to be broadly representative of the research community, including primarily large and small public and private colleges and universities, and also possibly predominantly undergraduate institutions, non-profit research institutions, hospitals, and profit-making organizations. However, no commitment is made to select either a minimum number of organizations or to ensure representation by every

NATIONAL SCIENCE FOUNDATION

The Federal Demonstration Project (Formerly the Florida Demonstration Project); Phase II Solicitation

AGENCIES: National Science Foundation, National Institutes of Health. Office of Naval Research, Department of Energy, and Department of Agriculture. ACTION: Notice.

summary: This Notice announces a solicitation to select organizations to participate in a Federal Demonstration Project (FDP) to eliminate unnecessary administrative burdens on sponsored research, thereby enhancing research productivity. The FDP constitutes Phase

organization type or other characteristics.

Participation Conditions

As a condition for participation in Phase II, the selected organizations will be required to agree to the following conditions:

1. To participate fully in the development and demonstration of Phase II activities: and in subsequent review and communication of Phase II results to appropriate officials and audiences.

2. To accept the General Terms and Conditions governing the carrent Florida Demonstration project, as revised for Phase II.

3. To conduct an assessment of its own internal systems and to report on and undertake appropriate organizational changes (including review and approval at organization system or state/local levels) to improve administrative systems by reducing unnecessary and redundant requirements.

4. To assess or measure actual or potential impact of changes on research

productivity.

 To defray the costs of participation without special awards or funding from the participating Federal agencies.

Selection Criteria

 Proposed approach(es) to addressing required Phase II activities, including methodologies for assessing the impact of administrative changes on research productivity.

2. Evidence of organizational and top management commitment to ful !

participation in Phase II.

3. Organization's proposed approach to its own internal systems assessment, including evidence of appropriate state system or agency agreement to engage in these or corresponding assessments.

4. Evidence of experience and leadership in improving research

administration.

In addition to the above, equally weighted criteria, consideration will be given to achieving an appropriate representation of organizations, including organization type, size, extent of research support, geographic location, etc.

Evaluation of Proposals and Selection Process

Evaluation of proposals will be carried out by a panel comprised of Federal agency officials and representatives of the research community convened by the Government University Industry Research Roundtable (GUIRR). The panel will make its recommendations to

an Interagency Assessment Committee, comprised of representatives of participating Federal agencies for final selection.

Organization of Phose II

Phase II will be organized around several major core activities and issues which will be addressed by the participating organizations and agencies. The emphasis of these activities will be on examining administrative requirements and processes which directly impact research productivity. The Federal agencies, in cooperation with the selected organizations, will assess

olicies and operational issues in the core areas; select appropriate issues for demonstration or testing purposes; develop demonstration protocol, and be the focal point for carrying out the activity and evaluating its results. Selected organizations must be involved in all the core areas. While the focus of the Phase II activities will be on Federal requirements and processes, selected organizations will be expected to make corresponding changes in internal systems, where appropriate and consistent with prudent stewardship of Federal or institutional resources.

Phase II Activities

The following core areas will be included in Phase II:

1. Terms, Conditions, and Award Instruments

The standard terms and conditions governing the original Florida Demonstration Project will be refined and modified, with particular emphasis on the issues of project relatedness, data rights and copyrightable materials, and issues related to different types of award instruments (grants, contracts, cooperative agreements). It is intended that, prior to the commencement of Phase II, the parties will ratify standard terms and conditions which will goven both the Phase II participation and awards made during Phase II. The period of the Phase II agreements will extend for 24 months.

2. Application Process

Issues pertaining to the administrative burden associated with the application process will be explored, with particular emphasis on the time, effort and paperwork required to comply with Federal application requirements. The goals of this core area will be to simplify the process for non-competing applications and funding and to develop uniform protocol and formats for application materials and electronic submission.

3. Reporting Requirements

Issues pertaining to the administrative burden associated with technical and financial reporting requirmenets will be explored. The focus of this core area will include contents of reports. standardization, and frequency, and electronic submission.

4. Audit Requirements

Alternatives to existing audit and systems review processes as a means of assuring appropriate accountability and proper stewardship of Federal funds will be explored.

Other Areas

In addition to the above core areas, selected organizations and participating agencies may agree to pursue additional administrative issues, including more limited studies and demonstrations which may not involve all participants. Examples of such activities could include developing standard certifications and assurances, addressing indirect cost negotiation and reimbursement issues, reviewing payment processes, etc.

What to Submit

Proposing organizations must submit fifteen (13) copies of a brief proposal (not to exceed 5 pages) which covers the following:

1 Phase II Narrative

A narrative describing:(i) the primary areas of organizational and staff expertise which the proposer would contribute to Phase II, with particular emphasis on the core activities:(ii) suggested approaches for addressing those areas: (ii) other suggested subject areas and features: (iv) expected benefits to organization and research community of organization and research participation, including suggested methods or approaches for assessing the impact of changes on research productivity.

2. Commitment/Responsibility

A section indicating the organization is top management and working level willingness and commitment to fully participate in the Phase II activities. This discussion should also identify the person who will be responsible for coordinating the organization is participation and their qualifications. In the case of organizations representing university systems, a single contact is required.

3 Internal Systems Review

A brief description of what and how the organization would reveiw is

internal systems and make or recommend changes. In the case of state institutions, how they will also seek review and appropriate changes at the system or state levels and evidence of appropriate state agency agreement to engage in such reviews.

4. Experience

A description of the organization's and its staff's experience and contributions in the area of sponsored research management.

5. Organization Profile

A brief summary of the organization's characteristics: type of institution/organization, size, Federal R&D funding for FY 85-87, by year and funding agency, etc.

Proposal Submission and Deadlines

Fifteen (15) copies of the organization's proposal must be received by C.O.B. July 15, 1988 at: Government—University—Industry, Reasearch Roundtable, National Academy of Sciences, National Academy of Engineering, Institute of Medicine, 2101 Constitution Avenue NW., Washington, DC 20418, Attention: FDP.

Selection and Schedule

Evaluation and selection of organizations will be completed about August 15, 1988.

Project organization and execution of Phase II agreements will be completed about October 1, 1988.

(OMB No. 3145-0060)
William S. Kirby,
Head. Policy Office. Division of Grants and Contracts. National Science Foundation.
[FR Doc. 88-12820 Filed 6-3-88; 10:11 am]

STATE OF OHIO OFFICE OF THE GOVERNOR

COLUMBUS 43266-0601

NATIONAL GOVERNORS' ASSOCIATION

WORKING GROUP ON STATE INITIATIVES IN APPLIED RESEARCH

List of Members

Alabama

Mr. Fred Braswell, III
Director
Alabama Department of Economic
and Community Affairs
3465 Norman Bridge Road
Montgomery, AL 36105-0939

(205) 261-3572

Alaska

Dr. Henry Cole
Special Assistant for
Science and Technology
Office of Management and Budget
Division of Policy
P.O. Box A
Juneau, AK 99811

(907) 465-3568

<u>Arkansas</u>

Dr. John Ahlen
President
Arkansas Science and Technology
Authority
100 Main Street, Suite 450
Little Rock, AR 72201

(501) 371-3554

California

Mr. Kenneth Gibson Executive Director Department of Commerce 1121 L Street, Suite 600 Sacramento, CA 95814

(916) 332-1394 Fax: (916) 322-3524 Colorado

Mr. Randy Harrison
Deputy Project Manager
Colorado SSC Project
One United Bank Building
1700 Lincoln Street, Suite 3720
Denver, CO 80203

(303) 839-3960

Connecticut

Dr. Jacob Goldman
President
Connecticut Academy of
Science and Engineering
c/o GB Energy Systems, Inc.
181 Main Street
Norwalk, CT 06851

(203) 846-0714 Fax: (203) 597-9762

<u>Delaware</u>

Mr. Donald Sullivan
Director
Business Development
Delaware Development Office
99 Kings Highway
Dover, DE 19903

(302) 736-4271 Fax: (302) 736-3491

Florida

Mr. Ray Iannucci
Executive Director
Florida High Technology and
Industry Council
Room 501-A, Collins Building
107 West Gaines Street
Tallahassee, FL 32399-2000

(904) 487-3134 Fax: (904) 487-0526

Georgia

Mr. Thomas Lewis Senior Executive Assistant Office of the Governor 201 State Capitol Atlanta, GA 30334

(404) 656-6870

<u>Guam</u>

Mr. Peter P. Leon Guerrero Acting Director Bureau of Planning P.O. Box 2950 Agana, Guam 96910

(671) 472-4201

Hawaii

Mr. Carl Swanholm Science and Technology Officer Department of Business and Economic Development P.O. Box 2359 Honolulu, HI 96804

(808) 548-8741 Fax: (808) 523-8637

<u>Idaho</u>

Mr. Richard Tremblay
Administrator
Division of Science and
Technology
Department of Commerce
Hall of Mirrors, 2nd Floor
700 West State
Boise, ID 83720

(208) 334-2470 Fax: (208) 334-2631

Illinois

Mr. John Straus
Executive Director
Governor's Commission on
Science and Technology
100 West Randolph Street
Suite 3-400
Chicago, IL 60601

(312) 917-3982 Fax: (312) 917-6732

Indiana

Dr. John Hague
President
Indiana Corporation for
Science and Technology
One North Capitol
Suite 925
Indianapolis, IN 46204-2242

(317) 635-3058 Fax: (317) 232-4146

Iowa

Mr. Doug Getter
Bureau Chief
Business/Targeted Small
Business Development
Iowa Department of Economic
Development
200 E. Grand Avenue
Des Moines, IA 50309

(515) 281-3036 Fax: (515) 281-6611

Kansas

Mr. William Brundage
President
Kansas Technology Enterprise
Corporation (KTEC)
400 Southwest 8th Street
5th Floor
Topeka, KS 66603

(913) 296-5272 Fax: (913) 296-5055 Kentucky
Mr. William Lomicka
Secretary
Commerce Cabinet
Capitol Plaza Tower
24th Floor
Frankfort, KY 40601

(502) 564-7670 Fax: (502) 564-3256

Maine
Ms. Patricia Tanski
Executive Director
Maine Science and
Technology Board
One Memorial Circle
Augusta, ME 04330

(207) 622-6345

Maryland
Mr. James Peiffer
Director
Business and Industrial
Development
Department of Economic and
Employment Development
45 Calvert Street
Annapolis, MD 21401

(301) 974-3514 Fax: (301) 974-2628

Massachusetts
Ms. Megan Jones
Executive Director
Massachusetts Centers of
Excellence Corporation
9 Part Street
Boston, MA 02108

(617) 727-4929

Michigan
Dr. James Kenworthy
Manager, Research and
Technology Programs
Michigan Strategic Fund
Michigan Dept. of Commerce
Law Building, Third Floor
525 West Ottawa
Lansing, MI 48933

(517) 373-7550

Minnesota
Ms. Beverly Jones
Executive Director
Office of Science and
Technology
900 American Center Building
150 E. Kellogg Boulevard
St. Paul, MN 55101

(612) 297-4368 Fax: (612) 297-4367

Mississippi
Mr. James Reidy
Chairman
Department of Physics
University of Mississippi
University, MS 38677

(601) 232-5322

Missouri
Mr. John Johnson
Executive Director
Missouri Corporation for
Science and Technology
High Technology Program
P.O. Box 118
Jefferson City, MO 65102

(314) 751-3906 Fax: (314) 751-5183

Montana

Mr. Samuel Hubbard
Executive Director
Montana Science and Technology
Alliance
46 N. Last Chance Gulch
Suite 2B
Helena, MT 59620

(406) 449-2778 Fax: (406) 444-2808

Nevada

Mr. Andrew Grose
Executive Director
Commission on Economic
Development
Capitol Complex
Carson City, NV 89710

(702) 885-4325

New Hampshire

Mr. Wallace E. Stickney Commissioner New Hampshire Department of Transportation John O. Morton Building Hazen Drive Concord, NH 03301

(603) 271-3734

New Jersey

Mr. Edward Cohen
Executive Director
New Jersey Commission on
Science and Technology
122 West State St. CN-832
Trenton, NJ 08625-0832

(609) 633-2740 Fax: (609) 292-5920

New Mexico

Mr. John Dendahl
Secretary
Economic Development and
Tourism Department
Joseph Montoya Building
1100 St. Francis Drive
Sante Fe, NM 87503

(505) 827-0381 Fax: (505) 827-0407

New York

Mr. H. Graham Jones
Executive Director
New York State Science and
Technology Foundation
99 Washington Avenue
Suite 1730
Albany, NY 12210

(518) 474-4348

North Carolina

Dr. Earl MacCormac
Executive Director
North Carolina Board of
Science and Technology
Office of the Governor
116 West Jones Street
Raleigh, NC 27611

(919) 733-5811 Fax: (919) 733-5166

North Dakota

Dr. Don Mathsen
Associate Dean
School of Engineering and Mines
University of North Dakota
213 Harrington Hall
University Station
P.O. Box 8103
Grand Forks, ND 58202

(701) 777-3132 Fax: (701) 777-5181 Ohio
Mr. Christopher Coburn
Science and Technology
Advisor
Office of the Governor
65 E. State Street
Suite 200
Columbus, OH 43266-0330

(614) 466-3086 Fax: (614) 644-5758

Oklahoma

Dr. Carolyn Wendel Smith
Interim President
Oklahoma Center for Advancement
of Science and Technology
6601 Broadway Extension
Oklahoma City, OK 73116

(405) 841-5139

Oregon

Dr. S. John Owen
Chairman
Department of Electrical and
Computer Engineering
Oregon State University
Corvallis, OR 97331

(503) 754-3617

Pennsylvania

Mr. Jacques Koppel
Executive Director
Ben Franklin Partnership
464 Forum Building
Harrisburg, PA 17120

(717) 787-4147 Fax: (717) 234-4560

Puerto Rico

Mr. William Ocasio
Executive Director
Governor's Economic Advisory
Council
Commonwealth of Puerto Rico
P.O. Box 42001
San Juan, PR 00940-2001

(809) 722-8660 Fax: (809) 726-1440

Rhode Island

Mr. Bruce Lang
Executive Director
Rhode Island Partnership for
Science and Technology
7 Jackson Walkway
Providence, RI 02903

(401) 277-2601 Fax: (401) 277-2102

South Carolina

Dr. Robert Henderson
Executive Director
South Carolina Research
Authority
P.O. Box 12025
Columbia, SC 29211

(803) 799-4070 Fax: (803) 252-7642

South Dakota

Dr. Ernest Buckley Special Advisor to the Board of Regents Kneip Building Pierre, SD 57501

(605) 773-3455

<u>Tennessee</u>

Dr. John Crothers
Director
High Technology Development
Division
Department of Economic and
Community Development
320 6th Avenue North
Rachel Jackson Building
6th Floor
Nashville, TN 37219-5308

(615) 741-5070

Texas

Mr. Richard Thomas
Director of State Affairs
Office of the Governor
State of Texas
P.O. Box 13561
Austin, TX 78711

(512) 463-1814

<u>Utah</u>

Dr. Randy Moon Science Advisor State of Utah Office of Planning and Budget 116 State Capitol Salt Lake City, UT 84114

(801) 538-1038 Fax: (801) 533-5231

Vermont

Mr. Elbert Moulton
Secretary
Agency of Development and
Community Affairs
109 State Street
Montpelier, VT 05602

(802) 828-3211

<u>Virginia</u>

Dr. Barry Holt
Director for Technology
Commercialization
Center for Innovative
Technology
The Hallmark Building
13873 Park Center Road
Suite 201
Herndon, VA 22071

(703) 689-3020

Virgin Islands

Dr. Darshan Padda
Vice President for Research
and Land-Grant Programs
University of the Virgin
Islands
RR #2, Box 10,000
Kingshill, St. Croix
U.S. Virgin Islands 00850

(809) 778-0246 Fax: (608) 267-2829

West Virginia

Mr. John Smolak, III
Assistant Director
Industrial Development
Governor's Office of Community
and Industrial Development
Building 6, Room B-517
State Capitol Complex
Charleston, WV 25305

(304) 348-2234 Fax: (304) 348-8887

Wisconsin

Dr. Rolf Wegenke
Administrator
Division of Economic and
Community Development
Wisconsin Dept. of Development
123 West Washington Avenue
P.O. Box 7970
Madison, WI 53707

(608) 266-3203 Fax: (608) 267-2829

Wyoming

Dr. James Speight
Chief Scientific Officer/
Executive Vice President
Western Research Institute
P.O. Box 3395
University Station
Laramie, WY 82071

(307) 721-2209

TABLE OF CONTENTS

		Section
1.	Program	A
2.	Introduction	В
3.	Presentations	С
4.	List of Participants	D

PROGRAM

Program

Fifth Meeting of the National Governors' Association Working Group on State Initiatives in Applied Research April 28 - 29, 1988 Washington, D.C.

THURSDAY, APRIL 28, 1988

Room 211, Hall of the States 444 N. Capitol Street, NW

8:30am - 9:00am

Registration and Coffee

9:00am - 9:15am

Opening Remarks by Chris Coburn, Science and Technology Advisor to Ohio Governor Richard F. Celeste

9:15am - 10:45am

Updates on States' Program Evaluation Strategies

Michigan Strategic Fund
Jamie Kenworthy, Manager, Research and Technology Programs

New York State Science and Technology Foundation
Graham Jones, Executive Director

Ohio's Thomas Edison Program
Chris Coburn, Executive Director

10:45am - 11:45am Evaluation Methods Used for the NSF Engineering Research Centers
Program and Update on NSF Science and Technology Centers
Program

Dr. Alan Leshner, Director, National Science Foundation Office of Science and Technology Centers Development

11:45am - 1:00pm Break for Lunch

1:00pm - 2:00pm Hollings Centers Competition

Dr. Don Johnson, Director, Industrial Technology Services National Bureau of Standards

2:00pm - 2:30pm Status of Key R & D Issues in the Federal Budget: An Overview

Dr. Kenneth Wilson, Nobel Laureate in Physics, 1982

2:30pm - 5:00pm The National Science Foundation

Mr. Raymond Bye, Director, Office of Legislative and Public Affairs, National Science Foundation, "Overview of NSF Activities and Budget" Break

Dr. Charles Brownstein, Assistant Director, Directorate for Computer and Information Science and Engineering, "Advanced Scientific Computing and Networking"

Dr. Bassam Shakhashiri, Assistant Director for Science and Engineering Education, "Efforts in Science and Technology Education"

Ms. Margaret Grucza, Study Director, Government Studies Group Division of Science Resources Studies

5:00pm - 7:30pm

Reception: The Monocle on Capitol Hill, 107 D Street, N.W.

Invited guests included selected Congressional staff, former speakers, federal R & D agency leaders and foreign science attaches.

FRIDAY, APRIL 29, 1988

Room 211, Hall of the States

9:00am - 9:15am Coffee

9:15am - 10:15am

Enhancing the Economic Output of the Federal Laboratories: New Initiatives

Mr. Norm Peterson, Strategic Planning Group, Argonne National Laboratory, "Overview of Technology Transfer Legislation and Programs"

Mr. Ray Gilbert, Manager, Applications Engineering at the National Aeronautics and Space Administration, Technology Utilization Division

10:15am - 11:15am

Foreign Trade Opportunities for State Technology Programs

Dr. Robert Yuan, Senior Advisor in Biotechnology to the U.S. International Trade Administration and Professor of Microbiology at the University of Maryland, College Park

11:15am - 11:30am

Break

11:30am - 12:00pm

NGA Committee on Economic Development and Technological Innovation - Announcements

Mr. Richard Geltman, Staff Director

12:00pm - 1:00pm

Future NGA Policy Recommendations/Activities: Open Discussion and Wrap Up

INTRODUCTION

Christopher M. Coburn
Science and Technology Advisor
to Ohio Governor Richard F. Celeste

Dear Working Group Member:

In late 1985, the National Governors' Association, having served as a forum for cooperation, interaction, and debate between the states for the past seventy-five years, established a Working Group on State Initiatives in Applied Research.

The group has met biannually since May of 1986 to share experiences and to discuss federal science and technology issues and legislation affecting the states. Meetings have focused on a wide range of topics and issues, ranging from federal initiatives to specific concerns at the state level.

In total, sixteen states have made presentations on various aspects of program design and development during the last five meetings. The group has also been briefed by and exchanged information with over seventeen federal programs, three international associations and ten U.S. Senators, Congressmen and their staffs. Private groups and individuals who are actively affecting national science policy and state science and technology activities have also participated at previous meetings.

This book is a compilation of the proceedings of the last meeting which was held on April 28-29, 1988, in Washington, D.C.

Nationally, there is a growing recognition that investments in science are necessary for long-term economic growth. States are committing significant resources to science in the context of a balanced, long-term plan. The Working Group lies at the point of intersection between the Federal research complex and state science and technology programs.

Future meetings will produce practical recommendations for cooperation. The first step is to ensure that the next administration becomes a partner with the states. Federal R&D programs direct enormous scientific resources that the states can draw upon, given the opportunity.

Second, the next administration must be directed to draw state science and technology programs into any national effort to increase U.S. global economic strength. States have learned the lessons -- economic competitiveness initiatives are a successful reality in the states and not just a promise of some action in the future. Together, the federal and state governments can implement a true national effort to increase America's economic competitiveness.

This agenda for cooperation will be the focus of our sixth meeting which will be held in Washington, D.C. on September 29-30, 1988. I hope you can attend.

Sincerely,

Christopher M. Coburn

Science and Technology Advisor to Ohio Governor Richard F. Celeste

SUMMARY OF PREVIOUS MEETINGS

The first meeting of the Working Group on State Initiatives in Applied Research was held in Washington D.C. on May 12-13, 1986. Structured around many informal panel sessions, discussion was focused on an agenda created by the participating states. The Working Group also touched on the need for better interaction between the federal government and the states.

At the end of the first meeting, the Working Group recommended that the National Governors' Association (NGA) pass a resolution supporting the reauthorization of the Small Business Innovation Research (SBIR) program, and that NGA's Center for Policy Research apply for funding from the National Science Foundation (NSF) for research on state science and technology programs. Both of these activities were implemented.

The second meeting of the Working Group was held in Washington on September 29-30, 1987. Highlights of this meeting included a presentation by the Science Counselor to French President Francois Mitterand on a new European Economic Community high technology group, a report on the SBIR Program by Congressman Nicholas Mavroules, Chair of the House Small Business Oversight Subcommittee, and a presentation on the process of innovation and the states.

The third meeting of the Working Group on State Initiatives in Applied Research was held on April 8-9, 1987. The Working Group produced another policy resolution on Increased Cooperation between Federal Competitiveness Programs and State Applied Research Initiatives which was adopted by the nation's governors at the NGA's annual meeting.

Discussions were also held on the proposed Superconducting Super Collider (SSC) and the National Center for Manufacturing Sciences (NCMS). Representatives Buddy MacKay and George Brown also talked about national economic competitiveness strategies and the role of state science and technology programs in economic

development.

The fourth meeting of the Working Group was held on September 28-29, 1987. Competitiveness was the dominant theme. Claudine Schneider, Co-chair of the Congressional Competitiveness Caucus, spoke along with two Congressional staff members representing both the House Science, Space and Technology Committee and the Senate Commerce, Science and Transportation Committee. Two issues emerged as cornerstones of the Working Group's long-term agenda: cooperation with the National Science Foundation and the need for better program evaluation measures. Alan Leshner of the National Science Foundation discussed cooperation on Science and Technology Centers and the Government-University-Industry Research Roundtable (GUIRR) provided insights on possible measures of program performance.

The last meeting of the Working Group, which was held on April 28-29, 1988, continued to focus on the issue of evaluation — looking at three state programs as case studies. Executive briefings on key aspects of the FY 89 Federal science budget were also provided, setting the stage for two discussions with the

National Bureau of Standards' Manufacturing Technology Centers Program and activities at the National Science Foundation. Foreign trade opportunities for state technology programs and the status of economic spinoffs from the federal laboratories were also discussed. PRESENTATIONS

Updates on States' Program Evaluation Strategies: Michigan Strategic Fund

presented by

James Kenworthy, Manager Research and Technology Programs

Summary of Remarks by

James Kenworthy, Manager Research and Technology Programs

Michigan Strategic Fund

Mr. Kenworthy began by explaining how the Michigan Strategic Fund conducted their second round of funding for their technology centers program.

They first required each center to develop what he called a "strategic research plan." A strategic research plan is a five year plan similar to a business plan appropriate to the earlier stage of a research and development organization. The plan is analyzed competitively.

During the planning process, each center is asked to describe what services they provide which the existing marketplace or universities do not. In other words, the center must explain what technical gap they fill and why they can succeed as a business in that gap. Mr. Kenworthy pointed out that since most centers are research-driven and university-oriented, their plans need to demonstrate how they will work with industry and serve an economic development purpose.

After each center's market niche is identified, they are then asked to describe why their service is a public good. Each center's plan must specify types of technologies they will focus upon. They must also explain how the state can capture a national leadership position in their technology area(s) and how the center plans to disseminate technology through start-ups and licensing. In designing a center, the first test is how a non-profit business can succeed. The second test is how the state will capture benefits from that success.

Mr. Kenworthy noted that the process of developing a strategic research plan requires that his office work closely with each of the centers. The process has enabled him to establish very close working relationships with center directors and has created a sense of accountability from both sides. He expressed the opinion that the quality of the collaborative

relationship between the state and the centers is a good indication of the center's success.

A grant between the state and the center is written which is similar to an NSF cooperative agreement. The state grant manager meets annually with a business advisory group that reviews the technical and economic development plan for the year and the benchmarks to be accomplished in the year ahead. Quarterly reports to the state reviews progress on those benchmarks. Investments in centers are reviewed by a non-partisan Research Advisory Board before action is taken by the Michigan Strategic Fund board.

One Working Group member asked Mr. Kenworthy what will happen when Governor Blanchard leaves office. He responded that centers were funded under a governor of another party and the program is building a base of support for the centers that will hopefully transcend political boundaries. They do this by involving business leaders from both parties in decision making and input.

Updates on States' Program Evaluation Strategies: New York State Science and Technology Foundation

presented by

Graham Jones, Executive Director

LEVELS OF EVALUATION

- 1. Basic Sanity Check
- 2. Are Contractual Requirements Met?
- 3. Are Program Objectives Achieved?
- 4. Does Society Benefit?

<u>PROGRAMS</u>

Investment Program

R & D Grants Program

SBIR Program

Regional Outreach Program

Research Centers Program

CORPORATION FOR INNOVATION DEVELOPMENT

Conserve Capital

Needs Test

True Innovation

Potential Benefit to Economy

Jobs

R&D Grants Pro ram

Objectives

 The main objective of the Program is to stimulate economic development in New York by supporting R&D projects, in Universities and not-for-profit laboratories, that have a distinct potential for industrial application. The latter is expected to strengthen the competitiveness of New York firms and to expand opportunities for job development and expansion.

Evaluation Procedures

- The evaluative steps reported here are to be distinguished from a comprehensive evaluation of the entire program. Rather, they describe evaluation of particular facets of a still maturing program, aimed at tracking and guiding the program's development into its initial full configuration.
- The evaluation of the Program is carried out on a regular basis by Foundation staff. It involves receipt and analysis of program and financial reports, personal visits to each project site, and completion of a formal monitoring review form for each project. In addition, it is required that each project report annually, for five years following completion of the project, accounts of patenting, licensing or other commercial application.
- The evaluation criteria applied in monitoring and review are:
 - commitment of firms to cooperation in R&D projects including financial support, provision of personnel, and use of equipment and material,
 - development of firms' revenues and jobs created as a result of the application of R&D results,
 - outcome of the planned R&D; actual and potential commercial application of the R&D results,
 - patents applied for and granted,
 - licenses granted,
 - financial support developed from other sources for R&D projects that resulted from the original one.

Small Business Innovation Research Promotion Program

Objectives

- To strengthen New York's "best and brightest" high tech companies with the support of "seed capital" at a critical stage of their new product development.
- To foster increased participation by New York State businesses in the Federal SBIR Program, highly leveraging federal money into technology-based economic development in New York.

Regional Technology Development Organization Program

Objectives

To accelerate the creation and growth in New York of technology-based businesses, leading to increased job opportunities and a strengthened economy. This program allows each region the flexibility to adopt strategies and take actions in support of technology development. Accordingly, each Regional Technology Development Organization (TDO) is encouraged to undertake programs and activities specifically tailored to their region.

Centers for Advanced Technology (CATs) Program

Objectives

- Encourage excellence and relevance in academic research in technological areas of high priority to sustain the absolutel, necessary intellectual base for the technologies that will keep New York industry competitive in the future.
- Accelerate technology transfer, the commercial application of the intellectual base (discoveries, inventions, and results of academic research) to help New York firms gain competitive advantage in new or established product lines.
- Prepare scientists and engineers familiar with industrial problems and priorities to provide the human resources required by New York firms to remain technologically competent and competitive.
- Promote communication and cooperation between industrial R&D and academic researchers so as to bring a new level of informed creativity to our industrial community.

where the more of any charge persons, went a said the extending out in the

the most explain wit her not revenue as resolveness many bear a land section of all

with me, report writing one mount from any term for many property and the state.

The state of the state of the season of the

Labeled to the constant of the constant of the last research

APPENDIX E

New York State Science and Technology Foundation Centers for Advanced Technology Program

Performance Criteria

The following questions represent criteria against which the performance of each Institution's Center for Advanced Technology will be evaluated. Each criterion tests a specific aspect of performance which is regarded by the Foundation as being either a necessary or a desirable ingredient of satisfactory performance under the contract. The criteria have different weights, and some weigh more heavily than others as the responses vary from positive to negative; no attempt is made to quantify this variation.

I. Management and Administration

- Is there a coherent organization and plan that coordinates all activities of the Center internally and also in relation to the Institution? Is the plan adhered to and updated?
- Is the management structure which selects and supervises the work of the Center well-designed to optimize the scope of activities undertaken?
- Are the projects which have been selected promising in terms of the introduction of significant innovation?
- Are the projects which have been selected promising in terms of their applicability to commercial products or processes?
- Does the management team of the Center have an active focus on the introduction of significant technological innovation and the maintenance of a high level of technical excellence?
- Does the management team of the Center have an active focus on the facilitation of technology transfer to the commercial community?
- Are university policies regarding contracts for sponsored research, faculty relationships with private companies, patents, proprietary data and related issues, conducive to the process of technology transfer?
- Are required reports complete and timely?

II. Performance and Results

 Has demonstrable progress been made toward the development of new or improved products or processes, or scientific or technological knowledge?

- Have demonstrable products or processes, or promising new patents, patent disclosures or copyrights resulted from the work at the Center?
- Have any of the results of this work been applied commercially in such ways as the improvement or creation of marketable products or processes or the creation or expansion of firms?
- Have any firms (or divisions of firms) relocated or retained their locations in New York in order to work with the Center or in close proximity to it?
- Have educational offerings (e.g. courses, workshops, conferences) been designed and offered to maintain a competent professional work force in the Center's area of technology? Have these offerings been well attended by the constituency they were designed to serve?

III. Relationships

- Do the industrial contributors participate in planning and project selection of the Center? Are they satisfied with the direction and results of the Center's programs?
- Do personnel from the industrial companies participate in the research and development work of the Center? Does faculty associated with the Center participate in the research and development work of industry?
- Are university policies related to promotion and tenure conducive to participation of faculty in activities of the Center? Does the Center attract the active involvement of the more highly-regarded members of the Institution's faculty?
- What levels of private and governmental, other than State, matching funds is the Center able to attract? What special support has the Center leveraged from these sources by virtue of its programs and accomplishments?
- To what extent do students participate in the work of the Center? Does the Center attract the better students?
- Has the Center been responsive to the needs of small companies and members of the general industrial community?
- Is any of the Center's work performed in cooperation with other academic or research institutions, including consortium members?
- Do the staff and investigators understand the mission of the Center, have a sense of common purpose, and enjoy a spirit of working together toward common goals?

Updates on States' Program Evaluation Strategies: Ohio's Thomas Edison Program

presented by

Christopher M. Coburn
Executive Director

OHIO'S THOMAS EDISON PROGRAM

Richard Fi Celetre Gavernor

Christopher M. Coburn Electrice Director 55 East State Street: Suite 200 Columbus, Onio 43256 0330 514: 456-3357 Telex 5574527 17404 UW Telecopy 644-5756

TO: EDISON TECHNOLOGY CENTER DIRECTORS

FROM: CHRIS COBURN

DATE: DECEMBER 9, 1987

RE: NEXT ROUND OF CENTER FUNDING

We are developing a process to award center funding in August, 1988. The goal of this process is to further strengthen our nine existing centers. It is the goal of the state to support only the nine current centers—funding of new Edison centers is not anticipated at this time.

The purpose of this memo and of the Center Directors' meeting is to seek your input in the funding competition process and timeline. We plan to release final documents detailing the funding competition by January 1, 1988. Appropriate center comments and suggestions will be included in the final document.

Summary of Funding Process

Two separate center funding processes are proposed. One will be for the three newer centers (Edison Materials Technology Center, Edison Industrial Systems Center, and Edison Biotechnology Center). The other will be for the original six centers.

Each of the newer centers will be asked to prepare a short report detailing their progress and future funding needs. Like the proposals that the original six centers submitted in 1986, the reports will reference achievements of original milestones and accomplishments made in staffing, facilities, research and development, educational programs, marketing, and matching contributions. A ten-year budget and specific financial information will also be requested. Funding decisions will be made on the basis of financial need and of satisfactory progress in meeting Edison Program and individual center goals and milestones.

The original six centers may participate in a two-phase, competitive process. The goal of this competitive process is to award Edison funding based on performance and need for additional resources. Only those centers needing Edison funds during the next two years will be eligible for the competition. The first phase of the process is the peer reviews, which are being conducted currently. The second phase is center reports, which will include answers to a set of performance criteria and a

narrative report of center accomplishments. Funding will be based on a center's ability to meet the performance criteria and to obtain matching funds. It is possible that a portion of the center pool may be divided equally among competing centers.

Funds Available for Centers

Between \$18 and \$20 million will be available for Edison Centers next August. A more exact figure will be determined in July or August. It is expected that \$5 to \$6 million will be available to newer centers, while about \$12 to \$15 million will comprise the competitive pool for the original centers. No funding has been recommended for the establishment of new centers.

Background

Several assumptions have shaped the development of the center funding process:

- 1. The original six centers have been in operation for three years and have technical, economic development, and management results which can be evaluated.
- 2. Since each center aspires to some common Edison goals, certain evaluation criteria may be applied to all six centers. However, the centers have different technologies, organizational structures, and clientele and therefore evaluation criteria unique to each center must also be applied.
- 3. As the Edison Technology Centers mature, results need to be quantified in order to make funding decisions on the basis of achievement of economic development and research goals and the need for additional state support. Representatives from all sectors are asking for results.
- 4. A limited amount of funds are available for the centers during the current biennium. When the legislature approved the state's budget for fiscal years 1988 and 1989, it included a cut in the Edison Program's budget from the previous biennium.
- 5. The three newer centers have not operated long enough to receive the same evaluation treatment as the original six.

With the exception of the last item, these assumptions point to a competitive funding process. Recognizing the importance of developing a fair and workable evaluation model for such a competition, the staff has worked with recognized national leaders from federal and state levels.

The review model found to be the most applicable is based largely on the experience of other state models. Some aspects were borrowed from the National Science Foundation. The main goal of

the competitive process is to award funding on the basis of performance, but also to build in flexibility to allow for the differences between the centers. A competitive process allows for more objective decision-making and provides the centers with greater incentives to meet Edison goals, as well as their own individual goals. The competitive system in other states has helped centers optimize economic development, research, matching, technology transfer, and educational performance.

Proposed Competitive Center Funding Process

Each of the original six centers are currently participating in the peer review. The results of these reviews are to be used largely for the benefit of each center. Reviewers have been requested to provide suggestions for improved performance. The evaluations will also be read by Edison staff and ITEAB.

Centers requiring funding during the next two years and desiring to participate in the funding competition will be asked to complete a competitive funding proposal. The proposal will include a short narrative describing the center's progress since inception and addressing any concerns or suggestions of the peer reviewers. It will also include answers to a set of performance criteria. A draft of these criteria is attached.

The performance criteria list is intended to be very comprehensive. It is recognized that the detailed list will require a large effort by competing centers, but the data should lead to equitable decision-making and to a better understanding of each center. Some of the data, particularly that relating to job generation and impact on business, must be collected by the centers from individual companies. In recognition of the work required, each center will be allowed approximately six months to complete its report.

The list of performance criteria is subject to your comments, as well as those of ITEAB. The final list will include detailed instructions and definitions. It is important to recognize that many of the performance questions listed have no "right answers", because of the differences between centers. Other pieces of data will be important to understand the operations of a center, but will not be used as measures. All will provide information to make fair and equitable decisions.

Process Time-Line

It is recommended that the centers have a relatively long period of time to prepare their reports because of the proposed structure, the matching documentation required with the reports, and the time to needed to address independent reviewer comments. A shorter amount of time will be required for report evaluation. Therefore, the following time-line is proposed:

January 1	Final documents detailing funding processes for original and newer centers released
January 15	Final peer review reports complete
July 1	Original and newer center funding reports due from centers to Edison Program
August 8	Edison staff evaluations complete, distributed to ITEAB
August 18	ITEAB recommends funding levels

<u>Ouestions</u>

If you have any questions or comments about the process described in this memo or the performance criteria, please feel free to discuss it at the center directors' meeting. If you have additional comments or questions after the meeting, please call me or Marianne Hudson. We look forward to your comments.

OHIO'S THOMAS EDISON PROGRAM

Richard F Celeste Governor

Christopher M. Coburn
Executives, rector
65 East State Street: Suite 200
Columbus, Ohio 43266 0330
614, 166-3887
Telex 6874627 TRAOH UW
Telecopy 644-5758

STATE OF OHIO DEPARTMENT OF DEVELOPMENT THOMAS EDISON PROGRAM

1988

EDISON TECHNOLOGY CENTERS

THIRD ROUND FUNDING FOR CENTERS SELECTED IN JULY, 1984 1988 FUNDING GUIDELINES

I. INTRODUCTION

In 1988, Ohio's Thomas Edison Program wishes to provide continued funding support to qualifying Edison Technology Centers. The goal of such funding is to further strengthen the capabilities and effectiveness of centers designated as Edison Technology Centers in July, 1984. These include:

Applied Information Technologies Research Center (AITRC) Cleveland Advanced Manufacturing Program (CAMP) Edison Animal Biotechnology Center (EABC) Edison Polymer Innovation Corporation (EPIC) Edison Welding Institute (EWI) Institute of Advanced Manufacturing Sciences (IAMS)

Funding awards will be made on a competitive basis. Grant amounts awarded will depend on each center's performance in meeting Edison Program goals and individual milestones, need for additional resources and the ability to match them. In order to qualify for third round funding, a center must demonstrate need for additional funding during the period beginning July 1, 1988 and ending June 30, 1990.

II. EDISON TECHNOLOGY CENTER GOALS AND OBJECTIVES

The goals of the Edison Technology Center program remain similar to those of previous years which have been published in "General Guidelines and Application Instructions" and individual center grant agreements. These goals are:

1. Economic development--job creation and retention, as well as business development and expansion, in Ohio

- Increase the competitiveness and productivity of existing Ohio companies through technological innovation
- Diversification of Ohio's economy--creation of new businesses and/or industries in Ohio
- 4. Formation of effective partnerships and consortia involving the private sector, colleges and universities, and government
- 5. Development of the highest possible technical competence given the field or area of technology
- 6. Development of financially and scientifically viable institutions
- 7. Establish and improve education and training programs to meet the needs of the workforce now and in the future

Progress in accomplishing these goals may be achieved by Edison Technology Centers through joint applied research and development projects, educational and training programs, technology transfer activities, and entrepreneurial development and assistance.

III. FUNDS AVAILABLE FOR QUALIFYING CENTERS

Between \$12 and \$15 million will be available for third round funding. A more exact figure will be determined by July or August, 1988. The amount of the awards will vary according to center performance.

IV. GRANT TIMELINE

The 1988 Funding Guidelines and Request for Proposals will be released to all six centers on or before March 8, 1988. Completed proposals are due to the Edison Program office no later than 5:00 pm, July 1, 1988. All proposals must be submitted by that date and time in order to be considered for funding. Ten copies of the proposal should be provided.

The proposal review and funding recommendation process will last about six weeks. Staff of the Edison Program will review each proposal and prepare a report for the Industrial Technology and Enterprise Advisory Board (ITEAB).

It is anticipated that ITEAB will make its funding recommendations at its August 18, 1988 meeting.

These recommendations will be carried to the Director of the Department of Development. The Director's decision will be forwarded to the State Controlling Board, which has final authority for the award of state grants. Every effort will be made to place the Department's grant recommendations on the Controlling Board's September 26, 1988 agenda.

V. PROPOSAL REQUIREMENTS

The challenge grant program is structured to provide information on each center's progress in meeting the abovementioned goals as well as individual center goals and milestones. There are three parts to a complete proposal: first, a narrative report detailing center accomplishments since July 1, 1986 and addressing each of the topics listed in the "Program Strategy and Progress Narrative" section, second, quantitative performance measure section, and third, documentation of new matching resources. More detailed information on each part of the proposal is included in the rest of these guidelines.

A. Program Strategy and Progress Narrative

The narrative report should detail the center's accomplishments for the period July 1, 1986 through June 30, 1988 and outline plans to strengthen the center using additional state money. Progress should be identified and explained for each of the program areas listed below. If there are other areas in which significant progress or accomplishments have been made, please include them in the narrative. Where appropriate, please discuss the center's progress in addressing the comments of outside peer reviewers. With the exception of an executive summary of progress and lists of research projects and business participants, no specific format is required, as long as each area is addressed. The narrative should be ten to twenty pages in length, excluding three exhibits and a budget requested below.

- a. Executive summary of the center's most important accomplishments during the period. The summary should be a maximum of two pages and cite progress in some of the areas listed below. Special emphasis should be placed on specific examples in which the center has directly impacted economic growth in Ohio. (This will not count against the narrative page limitation.)
- b. Program milestones. List the major program milestones and projected dates of accomplishment set by the center during the period. Such milestones or goals should relate to research, business participation, revenues,

staffing, education and training and other programmatic goals rather than to administrative matters. Has the center met each of these milestones at the projected time? Why or why not?

- c. Activities and accomplishments in research and development. Summarize important research efforts and note significant awards or citations received by the center or center researchers for research excellence. In a chart formatted after Exhibit A, briefly explain each research project underway or completed during the period. To the extent possible, please do not include confidential information. Any such information that is included should be marked "Confidential".
- d. Education, training and technology transfer activities and results. Describe significant training activities and their direct impact in meeting current or future industrial and community needs. Summarize the center's intellectual property policy and licenses granted by the center.
- e. Private sector participation. As appropriate, describe progress made in obtaining business participants and programs developed to benefit them, including innovative programs to assist small businesses. Discuss programmatic and financial contributions made by participating companies. In order to be considered a participant, a company must provide documented matching resources to the center during the reporting period or must have received assistance from the center during that time. Please provide a list of all current industrial participants in a chart formatted after Exhibit B. Confidential information should be so marked.
- f. Operational accomplishments. Discuss accomplishments made in the areas of staffing, facilities, marketing, obtaining matching resources, financial management, governing and technical boards, university-business cooperation, and administrative matters.
- g. Community relations. Describe significant interactions with local government agencies, economic development agencies (separate from the Edison Program), chambers of commerce, federal government agencies or laboratories, elected officials, trade and professional associations, and other Edison Technology Centers and Incubators. Summarize important benefits to the center and its partners resulting from those interactions.
- h. Updated budget and milestone plan. Summarize the

center's updated operational strategy or business plan and discuss any additions, deletions, or modifications to plans presented previously. The strategy should include an updated projection of major programmatic goals and milestones during the next three years (July 1, 1988 through June 30, 1991). A budget, outlining the sources and uses of all center resources for each fiscal year, must also be included. The budget should be divided by fiscal year and must cover the period July 1, 1984 through June 30, 1993.

B. Documentation of Matching Resources

Centers desiring additional Edison funds must show an ability to match those funds on at least a one to one basis with resources from sources other than state government.

Please submit new matching resources with this proposal. As in the past, quality of match is important. Match quality will be assessed in the following order: cash, including research contracts, from industry and foundations; federal government grants to the center; new equipment; in-kind contributions; used equipment; and federal research grants or contracts to individual investigators. Resources from small companies (those with less than 50 employees or less than \$5 million in annual sales) are valued more highly than resources from larger companies.

In order for new matching resources to be counted as match, satisfactory written documentation of commitment must be provided. Centers must submit a copy of a check, company purchase order and/or a letter, signed by an official with authority to commit resources from the organization, committing a specific amount of money to the center over a specific period of time. Letters committing equipment or non-monetary resources must include a statement detailing how the contribution was valued and how it is related to the center's activities. If claimed match is a research grant or contract, a copy of the contract or the grant information sheet from the awarding agency should be submitted. Equipment should be treated as it is for tax purposes and other non-monetary contributions should be valued at market rates. As in the past, an independent appraisal for all used equipment claimed at or above \$5,000 must be submitted.

C. Program Progress Measures (Exhibit C)

A number of statistical tables, requesting quantitative data about the center's performance of economic development, research, and management goals is attached as Exhibit C. In

general, the tables cover center progress from July 1, 1986 though June 30, 1988 (the "reporting period"), although some measures are marked differently. A response should be given for each measure and the center may attach appropriate additional information that will enhance the Edison Program's understanding of the center's response. If there are no results for a given measure, the form should read "none" or "0". If the request does not apply to the center, please briefly explain why not.

Instructions to complete each measure is listed below. Each number below corresponds with the tables in Exhibit C. Definitions for several terms are included in Section VI.

Increased Industrial Competitiveness

- 1. Number of companies associated with the center.

 Data in this section should summarize information included in Exhibit B. The combination of "total members" and "total non-members" should equal the number of companies listed in Exhibit B.
- 2. Dollar value of matching resources from participating companies.

 The table requests a breakdown of industrial matching resources provided by the companies counted in table 1. The table may include matching resources received since the center's inception, as long as the resource has been previously certified or is documented in the proposal. Please use the actual value of the match, rather than the weighted values listed in Section V.B. Do not double count among the categories. For instance, if a research contract is counted toward a particular company's membership, the contract may not
- 3. Growth in industrial participation.

 This table charts the annual growth of industrial participants and matching resources from industry for six years beginning fiscal year 1985.

be included in the Research category.

4. Research projects.

This table requests summary information on the number of research projects under the auspices of the center completed or underway during the reporting period. The chart should parallel Exhibit A.

Product or Productivity Improvement Impacts

5. Number of companies reporting that center efforts improved their "bottom line".

Provide the total number of companies who report that a center research project, training program, or other center service resulted in a cost savings, increased revenues, high return on investment or other "bottom line" improvement. All citations must be quantified in table 6. In all cases, the improvement must be directly related to a specific center activity and the company must be included in Exhibit B.

6. Quantify "bottom line" improvements

For the companies reporting improvements in table 5,
quantify the improvements for the group as a whole.

Several categories, including "other measures" are
noted. More than one category may be used per company
as long as there is no double counting. Return on
Investment is generically defined at the present value
of cash flows during the next five years directly
resulting from the center effort divided by the
company's investment into the project.

For each company reporting improvements, the center must have on file a statement from the company estimating the direct impact of the center on that company. These letters do not need to be attached to the proposal, but should be available to the Edison Program for review if a question should arise. This will allow for the total impact measures to include information of a confidential nature.

Job Impacts

7. Number of center employees.

In 7.A., provide the full-time equivalent number of personnel currently employed by the center. A full-time equivalent job is considered to be one of 35 or more hours. Only those people working at the center's headquarters or those who receive all of their compensation from the center should be included. In 7.B., provide the full-time equivalent number of college personnel (including faculty, students, and administrative personnel) who currently work directly on center activities. No positions may be included in both A and B.

The State of Ohio strongly encourages the employment of minority workers. Please note for both categories the number of full-time equivalent employees who are minorities as defined in the Definitions section. These figures should be included in the total job figures as well. Please attach the center's policy for affirmative action in employment.

8. Jobs created at participating companies.

9. Jobs retained at participating companies
For the categories in both tables, note the number of
companies reporting job creation or retention and the
number of current full-time equivalent jobs created or
retained at participating companies as a direct result
of center activities. Only those companies included in
Exhibit B are eligible to be counted in the table. The
reporting companies must show a reasonable and causal
relationship between center research, education and
training, or entrepreneurial assistance activities and
jobs created or retained at the firm. Jobs created or
retained at the company due to other reasons during the
period may not be included in the table.

All of the data included in the tables must be documented to the center by the reporting companies. Letters reporting job impacts do not have to be included in the proposal, but the center must have them on file for possible review. Double counting of jobs created or retained is prohibited. Data included in the job creation table may not be included in the jobs retained table and vice-versa.

10. Number of start-up firms assisted.

Enter the number of start-up firms the center has assisted during the period. Start-up firms are those which have legally incorporated since January 1, 1985. Such assistance may include the "spin-off" of a technology developed at the center, educational or training assistance, prototype testing, consulting, or entrepreneurial assistance. All current employees, adjusted for full-time equivalency, of such start-up firms may be counted in part B of the table. The data in this table may be included in table 8.

Center Technology

11. Center Patents.
Include patent

Include patent information relative to those research projects listed in Exhibit A. Information related to other projects may also be included only if they are directly related to these projects, were conducted by personnel directly related to the center, and were completed during the period. For each patent application, disclosure, or award, please list the title and author.

12. Number of papers, theses, dissertations and official presentations by center personnel.

For those personnel directly related to the center

only, total the number of the above activities taking place during the reporting period. Papers, theses, dissertations, and official technical presentations may only be included in the total when their primary purpose is to describe the results of research projects listed in Exhibit A.

13. Licenses.

The table is meant to measure center licensing activities. Only those licenses which cover technology developed and owned by the center and for which a fully signed licensing agreement exists may be counted in the data. In Part B of the table, please total the dollar value of royalties or other resources that the licensing companies have agreed to give to the center in return for the license. Such values must be included in the executed licensing agreements. Part C requests the total value of royalties or other resources that the center has actually received. Information about any potential licensing arrangements should be included in the narrative portion of the center's proposal.

- 14. Number of individuals directly conducting research.

 Please provide a further breakdown of data in table 7, which summarizes the number of individuals who are currently engaged in center activities. In order to be counted in this table, an individual must currently be working on one of the research projects listed in Exhibit A. "Center research personnel" is defined in this table as those who work at center "headquarters" and receive all compensation from the center. Please provide the breakdown of researchers in terms of raw numbers and adjusted full-time equivalents.
- 15. Research grants and contracts from non-state sources.
 Information about research grants or contracts separate from company memberships should be measured. Do not include research contracts that count toward a company's membership obligation. Please enter the data for applications made by the center for grants or contracts from the listed sources during the reporting period and the data for grants and contracts actually awarded (those awards for which the center has written notice).

16. Facilities.

Please provide information about the center's facilities and equipment. All information should be current. Information included under the "center" category should be for space and equipment at center

headquarters. University partner information should relate directly to center activities.

College/University Involvement

- 17. College/University resources supporting center. Indicate the dollar value of support to the center from participating colleges and universities. The "GRF" represents state General Revenue Funds -- which include dollars allocated to state colleges and universities by the State of Ohio. "Non-GRF" funds would include funds given to the university by private organizations or individuals or resources from private universities. division between GRF and non-GRF is made because only the resources from non-GRF resources may be considered as match to the Edison grant by state law. However, a school's commitment of its state resources may often be vital to the success of the center. Data in the "received" columns should include only those resources which were actually received by the center during the reporting period. Data in the "committed" category should include those resources committed by the college to the center which have not yet been received. Please attach documentation for all matching resources which have not been certified previously.
- 18. Total amount of space at academic institutions dedicated solely to center (in square feet).

 Do not include any space that may also be used for research projects that are not in Exhibit A.
- 19. Number of projects involving more than one academic institution.
 Cooperation among universities is strongly encouraged by the Edison Program. Joint research, training, or entrepreneurial assistance projects are appropriate programs for cooperation. Any of these kinds of joint center projects should be totaled under "All Projects". The "Research Projects" number should be a subtotal of all projects. Please discuss such joint research projects in the narrative portion of the proposal.
- 20. Center resources paid to academic institutions.

 For each academic partner, please provide the requested budget breakdowns for payments made during the reporting period.

Education, Training, and Technology Transfer

21. General education and training.

Count the number of training classes or seminars held by the center, the number of individuals successfully completing such training, and quantify financial support of other groups for sponsorship of training programs. Financial support included in the table must be separate from membership resources.

Optional Data

- 22. (Optional) Number of companies reporting follow-up investment in technology developed in conjunction with center.
 - One of the goals of the Edison Program is that companies will be interested in technologies developed at a center and decide to carry out the final product development work or other work necessary to put that technology on the market or in use within the company. How many companies reported investing their own resources (cash or in-kind) in product development, refinement, licensing, marketing, etc. in this activity?
- 23. (Optional) Dollar value of follow-up investment.
 Ask the companies reporting further work on center developed technology to estimate the amount of company resources invested in such activity during the reporting period.
- 24. (Optional) Number of companies relocating to Ohio acknowledging center efforts or activities as influencing their decision.

 The table should include companies reporting a relocation to Ohio from another state which resulted in part from center activities (research and development, contact with center membership, education and training, entrepreneurial assistance). For the jobs number, count only the full-time equivalent number of new jobs added at the Ohio site. Data in this table may be included in table 8.
- 25. (Optional) Number of graduate students involved in center activities hired by participating companies. Enter the number of graduate students formerly involved in carrying out center research projects (those listed in the narrative research descriptions) who were hired for full-time permanent research positions by participating companies during the reporting period.

VI. DEFINITIONS

Ohio company: private enterprises which have established and continue to maintain operations and facilities in Ohio and are incorporated under Ohio law.

Minority: those persons belonging to the following ethnic groups: American Indian, Black, Hispanic, and Oriental (State of Ohio Affirmative Action guidelines).

Group Sponsored Project: research projects that are financially sponsored by two or more companies, for which research results are available to sponsoring companies only.

Single Sponsored Project: research projects sponsored by an individual company. Such projects are usually proprietary in nature and intellectual property rights belong to the contracting company only.

Generic Project: research projects for which results are available to all center business members.

<u>Full-time Equivalent Jobs</u>: jobs that are 35 or more hours per week.

VII. EVALUATION CRITERIA

Each of the three sections of the proposal -- narrative, matching documentation, and the quantitative measures -- are important in determining center funding levels.

When the third round funding proposals are reviewed, performance and progress in the following areas may be evaluated:

- -impact on economic development and job creation
- -ability to meet programmatic milestones
- -quality and quantity of matching resources
- -ability to attract business participants and increase their competitiveness and productivity
- -development of high quality research programs and capabilities
- -development of effective education, training, and technology transfer programs
- -progress toward building financially and scientifically viable centers
- -university support and commitment
- -community support

EXHIBIT A

CENTER RESEARCH AND DEVELOPMENT PROJECTS

	Objective and	Project Description
	Project	Cost
Universities	or Subcon-	tractors
		Company Sponsors
		Type*
		Title
		roject Title

* Type of Project
Group Sponsored Project = GSP
Single Sponsored Project = SSP
Generic or Core Project = Core

EXHIBIT B

PRIVATE SECTOR PARTICIPANTS

Company Name Headquarters and Address Location	Number of Employees Ohio Worldwide	Type of Participation*
--	---------------------------------------	------------------------

^{*} Type of Participation

Membership = M

Contract Research = C

Training = T

Other = 0

Increased Industrial Competitiveness

				To to the	Objo
		Total Members	Ohio Members	Non- Members	Non- Members
-	1. Number of companies associated with center			ľ	
7	2. Dollar value of matching resources from associated companies				
	A. Membership (does not include equipment)	Month of the			
	B. Equipment (membership and non-membership resources)			On the little with the last of	
	<pre>C. Research contracts (separate from membership resources)</pre>				
	D. Education and training (separate from membership resources)				
	E. Other (please define)				
	7/84 - 7/85 6/85 6/86	- 2 - 2 - 2 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	7/87 -	- 88/2	06/9
m	3. Growth in industrial participa- tion				
	A. Total number of members	383			
	B. Total number of other partici-				

Dollar value of resources from industry	7/84	- 58/9	- 98/2	- 18/7	- 88/2	- 06/9
				Dollar Number	Value	
Projects						
Projects						
Productivity Improvement Impacts	ic ts		ia.	Total	In <u>Ohio</u>	
reporting that c	enter effo	center efforts improved	rrs.			
6. Quantify "bottom line" improvements				Total	In Ohio	
Return on investment						
reductions						
Improvements in Operating Efficiency (improved productivity and product quality)	ncy t quality)					
profits or yields			-			
product sales						
please define		a				

_	
equivalents)	
(full-time	
Impacts	
Job	

Minorities							Minorities		
In Ohio				a a	(*		In <u>Ohio</u>		
Total							Total		
	7. Number of center employees	A. Directly employed by centerB. University personnel directly engaged in center activities	8. Jobs created at participating companies	A. Number of companies reporting job creation resulting from center developed technology or assistance	i. Center technology resulting in a new product	ii. Center technology or activity resulting in an improvement of an existing process or product		B. Number of jobs included in item 8.A.i.	C. Number of jobs included in item 8.A.ii.

A. Number of companies reporting job retention resulting from center developed technology or assistance

9. Jobs retained at participating companies

i. Center technology resulting in a new product

Minorities											University Personnel Directly Engaged in Center Activities			
Tota 1 Ohio											Direct Center Employees			8.3
	ii. Center technology or activity resulting in an improvement of an existing process or product	B. Number of jobs included in item 9.A.i.	C. Number of jobs included in item 9.A.ii.	10. Start-up firms assisted by center	A. Number of companies	B. Number of jobs created	Center Technology	11. Center patents - attach general description of each	A. Number of patent applications and/or disclosures filed	B. Number of patents granted	12. Number of papers, theses, dissertations and official presentations by center personnel	A. Papers published in national or international scholarly journals	B. Papers to national or international technical conferences	C. Technical presentations to professionally sponsored conferences

	Ohio Companies					3*	Full Time FTE	EQVINC							
	Total							MINOLICY					Ī		
D. Ph.D. dissertations and Masters theses		13. Licenses	A. Number of licenses awarded	B. Total dollar value of licenses	C. Dollar value of royalties returned to center		Total	14 Number of individuals directly conducting	research	A. Center research personnel	B. University professors	C. University graduate students	D. Subcontractor personnel - please define	E. Other - please define	

Other						SITY	Space In Use					
Founda- tion						UNIVERSITY PARTNERS	Total Space Available					
Federa1							Space in Use					
Company						CENTER	OU I				1	1
	Research grants and contracts from non- state sources	Number of applications for research grants/contracts	r of research grants/contracts ed	Total dollar value of research grant/ contract applications	Total dollar value of research grants/ contracts awarded		Total Spac	es	A. Square footage of space for center	Cost per square foot	Current value of equipment	Replacement value of equipment
	15. Research state sou	A. Number grants	B. Number of awarded	C. Total contra	D. Total doll contracts			16. Facilities	A. Square center	B. Cost	C. Curre	D, Repla

S	College/University Involvement	Non-GRF Resources	sources	GRF Resources	ces
		Received	Committed	Received	Committed
17.	17. College/University resources supporting center				
	A. Cash				
	B. Facilities and equipment				
	<pre>C. In-kind donations (including personnel)</pre>				
	C				
	E. Other (please define)				
18	Total amount of academic institution space dedicated solely to center (in square feet)	space dedicated	3		
			A11 Projects	Research	
19.	Number of projects involving more than academic institution	an one	The second second	BILL REMOGN	
			Edison	Matching Resources	
20.	Center resources paid to academic institutions:	stitutions:			•
	A. Research personnel	3			28
	B. Equipment				

Edison Matching Funds Resources				to more than one univer lty, please provide figures for each							
	C. Services (training programs and testing)	D. Overhead	E. Other	* NOTE: If payments were made to more than university.	Education, Training, and Technology Transfer	21. General education and training	A. Number of classes or seminars held	B. Number of people attending center classes or seminars	C. Dollar value of sponsorship (cash)	<pre>D. Dollar value of sponsorship (donated service, in-kind)</pre>	

Opt	Optional Data	Total Members	Total Ohio Members	Ohio Non- Members	Non- Members
22.	(OPTIONAL) Number of companies reporting follow-up investment in technology developed in conjunction with center				
23.	(OPTIONAL) Dollar value of follow-up investment		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		<u>Total</u>	In <u>Ohio</u>	Minorities	8 8
24.	(OPTIONAL) Number of companies relocating to Ohio acknowledging center efforts or activities as influencing their decision				toesa for
	A. Number of jobs resulting from #24				
		Total	Ohio Companies		

Number of graduate students involved in center activities hired by participating companies

(OPTIONAL)

25.

PROJECT OBJECTIVES

AND METHODOLOGY

BACKGROUND

Ohio's Thomas Edison Program was initiated in 1983 by Governor Richard F. Celeste and the Ohio General Assembly. It is a \$232 million effort created to stimulate technological innovation in Ohio through university/industry partnerships. The three components of the program are the Edison Seed Development Fund (SDF), the Edison Incubators and the Edison Technology Centers. The purpose of this project is to evaluate the Edison Seed Development Fund, which represents over \$21 million in state and non-state investments. Since January 1984, 92 SDF grants have been made to Ohio companies (see attached Portfolio). Of these, the research of 46 of the grants has been completed. This project seeks to compile and evaluate the results of the completed 46 SDF grants.

OBJECTIVES

This evaluation seeks to provide detailed information on the performance of the Seed Development Fund (SDF) to determine: program impact, analysis of findings and next steps. This evaluation is intended to describe the impact of each research project both from the company's and the university's standpoint, give an overview of the 46 completed SDF projects, the current status of the companies involved with these projects, the status of the technology investigated, and the administrative aspects of the program.

METHODOLOGY

The project manager, Jane Kirksey, has initiated a survey of the industries and their respective academic partners with completed Seed Development Fund projects. An Industry Interview Questionnaire has been developed to elicit information concerning: company performance, technology application and utilization, employment level and participants critique of the Seed Development Fund program. A second questionnaire, a University Interview Questionnaire, tracks the interaction with the partner industry, research results, publications and presentations, final status of the research, and participants critique of the Seed Development Fund program.

This survey will be executed through mailings, telephone interviews and selected on-site visits. The industries and universities will be initially contacted by mail (cover letter and survey attached). The format of the mailing will be structured to elicit comprehensive information on all completed

projects. This data gathering will be enhanced by selective, indepth individual project analysis. Personal on-site visits will be made to over 50% of all involved businesses to derive more thorough, extensive information on individual experiences with the Seed Development Program.

An overview of the program with findings and recommendations will be provided using the results of this evaluation, relying on responses to the questionnaire and general comments.

INDUSTRY INTERVIEW QUESTIONNAIRE

SEED DEVELOPMENT FUND COMPLETED PROJECTS

	Date:
CONTACTS	
Project:	Number-
-	Telephone:
Address.	President:
	Project Director:
University:	Project Manager:
Are you projecting any addition of within the next year? _v / o within the next 3 years?_ Have you relocated any person	current number of Ohio employees? If there has been not, how many jobs resulted from the SDF project? In all jobs at your facility related to the SDF research: \[\frac{n}{n} \]. Number: \[\frac{v}{n} \]. Number: In all or facilities from out-of-state since inception of the low many Did the SDF research influence this ys?
Can you identify any spin-of technology development in th	f jobs (jobs in other firms) as a result of research or
	is project?

How long has your company been in business? years.
Gross annual sales when applying were: S What are current gross annual sales? S Can any of this difference be attributed to the SDF project? v /n. Please elaborate:
Have you filed any patents? y / n., How many? Number granted?
Have any licenses been granted? v/n To whom: Value \$
Amount of royalties paid to the state \$ (Class II only).
Current square feet of facilities used or owned in Ohio: Manufacturing Research/Development Office
Has your company garnered external funding from such sources as SBIR, venture capitalist companies, other private sources etc.? v/n. Please describe type, amount and if used as matching funds for this SDF grant:
How would you characterize your company's interactions with academic institutions in the past 4 years? Please indicate the appropriate description.
Greatly decreased About the Greatly increased Increased
Has the Ohio Thomas Edison Program influenced the level of interaction with academia?
TECHNOLOGY Did the research completed under this project result in a process or a product? y / n. Describe:
How would you classify the current status of your product or process (check appropriate description): Being actively marketed Anticipate marketing within the next years Awaiting additional development
Being developed by another firm Deemed economically or scientifically marginal: will not be marketed
Will not be marketed for other reasons Please elaborate:

Have you utilized Edison Incubator resources? v/n. If yes, in what way?
Have you utilized Ed'son Center resources? v/n. If yes, in what way?.
Was SDF funding adequate for completing the needed esearch? v/n If not, what levels would you suggest for Class I projects \$ for Class II \$
Was the time alloted for the SDF project adequate to complete the research?. <u>y / n</u> . If not, how many additional months did you need?
ADMINISTRATIVE Did you have any difficulties with the SDF application approval process?. v / n. Do you have any suggestions for improvements?
Do you have any comments or suggestions on the quarterly reporting procedures? Do you have any suggestions for improvements?
Do you have any comments in regard to university/industry relationships (contracts, technical interactions, proprietary rights, equipment loans or purchases, etc)?
Have you continued to interact with the University since completing the SDF project? y / n . In what capacity?
MISC From an overall standpoint, do you consider your Seed Development Project to have been successful. v/n. What were the most positive and negative aspects of the program?
Are there restrictions in the Edison program that prohibit it from being utilized more by industry?
Any other comments you have are most welcome.

UNIVERSITY INTERVIEW QUESTIONNAIRE

SEED DEVELOPMENT FUND COMPLETED PROJECTS

		in the state of th	
Project:		Number:	
Company:	oka ing manaka	Telephone:	
Address:	1353 1 31 10 FD 4 1	President:	
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Principal Investigator:	
University:		Felephone:	
Address:		Project Manager: Adminis- trator:	
PRINCIPAL INVESTIGATOR		trator:	
PRINCIPAL INVESTIGATOR		trator:	
PRINCIPAL INVESTIGATOR		trator:	
PRINCIPAL INVESTIGATOR What university staff were en	R ngaged in this proje Total # Involved	ect? Full Time Equivalent	
PRINCIPAL INVESTIGATOR What university staff were en	Rngaged in this proje Total # Involved	ect? Full Time Equivalent	
PRINCIPAL INVESTIGATOR What university staff were en Type Professors	Rngaged in this proje Total # Involved	ect? Full Time Equivalent	
PRINCIPAL INVESTIGATOR What university staff were en Type Professors Graduate assistants	Rngaged in this proje Total # Involved	ect? Full Time Equivalent	

Number of presentations made: (Please give title, conference, date, etc.)
Has research led to obtain ing other research funding? If so, please specify, type and amount.
Equipment used for this project was (check all pertinent descriptions): bought for the project with SDF funds retained by the university supplied by partner industry retained by partner industry available at university at onset of project other (describe)
Was SDF funding adequate to complete the research? v/n. If not, what levels would you suggest: o for Class I projects? \$
Was the time allocated for the SDF project adequate to complete the research? v / n . If not, how many additional months did you need?
Did research completed result in a process or a product? v/n.
Did you receive adequate financial and technical support from partner industry? $\underline{v / n}$. Please elaborate:
Have you continued to interact with the partner industry since completing the SDF project? <u>v/n</u> . If so, in what capacity?
Any comments or suggestions on reporting procedures?
From an overall standpoint, do you consider this Seed Development Project to have been a successful experience for the university? $\underline{v / n}$.
Any other comments you have are most welcome.

ADMINIS	TRATION		
Any comminteraction	nents in regard to un ns, proprietary rights	iversity industry relate, equipment loans or p	ionships (contracts, technical ourchases, etc.)
	rks in regard to the say, overhead charges,		onship (contracts, reporting
			¥.
How wou years?			actions with industry in the past 4 Increased
	Greatly Decreased	About the same	Greatly Increased
Has the E	dison Program influ	enced this interaction?	v/n Please elaborate:
Do these in what v		dustry differ from pr	evious interactions? v/n. If yes,
What rest	rictions prohibit grea	ater use of the SDF pr	ogram by the university?
Any other	r observations you ha	ave are most welcome.	

Evaluation Methods Used for the National Science Foundation Engineering Research Centers Program

and an

Update on the NSF's Science and Technology Centers Program

presented by

Dr. Alan Leshner, Director
National Science Foundation
Office of Science and Technology Centers Development

THE LIFE CYCLE OF AN NSF/ERC 9 1988 MAY << CEGEND >> YEAR

. FULLY FUNDED PERIODS

3,6: RENEMAL EVALUATION

PHASE-OUT PERIODS BUT ELIGIBLE TO COMPETE WITH NEW PROPOSALS

ERC OVERSIGHT AND MANAGEMENT VEHICLES

- (TAC TEAM VISITS) ANNUAL REVIEWS
- OTHER VISITS AND ADVISORY MEETINGS
- INDUSTRIAL SYMPOSIA
- NSF GROUP TO **ADVISORY** INDUSTRIAL
- **MEETINGS** CENTER DIRECTORS'
- THIRD-YEAR RENEMAL EVALUATION

ERC THIRD-YEAR REVIEW ------SITE TEAM COMPOSITION

TO 7 ACADEMIC/INDUSTRIAL REVIEWERS _L

EXPERTISE FIELDS OF *FECHNICAL*

OF RESEARCH TEAMS MANAGEMENT X

RESEARCH/DEVELOPMENT INDUSTRIAL ×

ENGINEERING EDUCATION

REVIEMER(S) ORIGINAL PROPOSAL TECHNICAL ADVISORY COMM. CHAIR NSF

CHAIR ERC PROGRAM DIRECTOR - TEAM NSF

OVERALL FACTORS

ITS GOALS AND ERC PROGRAM HAS ERC MET GOALS?

GOALS? SHARED COHESIVE WITH ERC SI

ERC OR IS IT BUSINESS AS USUAL? AN SI

BE ERC ACHIEVED THAT COULD NOT THROUGH INDIVIDUAL GRANTS? ACHIEVED WHAT HAS

- Joseph

ERC THIRD-YEAR REVIEW -------EVALUATION CRITERIA

RESEARCH

- EDUCATION
- INDUSTRIAL COLLABORATION
- KNOWLEDGE/TECHNOLOGY TRANSFER
- OUTREACH
- LEADERSHIP
- STRATEGIC PLANNING
- INSTITUTIONAL ENVIRONMENT/SUPPORT

FUNDAMENTAL RESEARCH

COMPETITIVENESS IMPORTANT FOR PLAN WITH SYSTEMS COHERENT

RELEVANT TO TECHNOLOGICAL ADVANCES HIGH QUALITY EXPLORATORY RESEARCH

ADVANCES ACHIEVABLE PROJECTS FOCUSED ON TECHNOLOGY

CROSS-DISCIPLINARY TEAMS

EXPERIMENTATION INSTRUMENTATION PROMOTES

THE DIAM

EDUCATION

INVOLVE UNDERGRADUATE AND GRADUATE STUDENTS IN RESEARCH BETTER PREPARE STUDENTS FOR ENG PRACTICE CROSS-DISCIPLINARY TEAM RESEARCH EXPOSURE TO INDUSTRIAL VIEWS VIEW OF ENGINEERING SYSTEM TECHNOLOGY-DRIVEN RESEARCH

ERC DEVELOP COURSE MATERIALS BASED ON

INDUSTRIAL COLLABORATION

ONGOING INVOLVEMENT IN GUIDING/ASSESSING

IN JOINT RES/EDUC INVOLVEMENT DIRECT

J SUPPORT BASE LARGE ENOUGH TO SIGNIFY COMMITMENT FROM INDUSTRY

PRODUCED ' BT

KNOWLEDGE TRANSFER TO INDUSTRY

EFFECTIVE METHODS DEVELOPED

CONTINUING EDUCATION FOR PRACTICING ENG

O POTENTIAL OR ACTUAL IMPACT TECHNOLOGICAL CHANGE

S ENC ATENED WE WITCHES

OUTREACH

FROM ERC INVOLVE STUDENTS/FACULTY OTHER SCHOOLS?

ITS FIELD? Z LEADER IS ERC VIEWED AS A

[10 H or]

STRATEGIC PLANNING

DETERMINE VISION

ERC'S IMPACT ON GAPS IN KNOWLEDGE BLOCKING TECHNOLOGICAL ADVANCE TECHNOLOGICAL GOALS DEFINE

IN KNOWLEDGE RESEARCH NEEDED FOR DEFINE MANAGEABLE THRUSTS ADVANCES EXPLORATORY SIGNIFICANT FOCUSED RESEARCH NEEDED FOR ADVANCES IN PROCESSES, DEVICES, ETC.

LEADERSHIP

VISION OF CENTER

INTO INTEGRATES INDIVIDUAL FACULTY TEAM AROUND COMMON ABJECTIVES

WITH ROLE RESEARCH BALANCES INDUSTRIAL NEEDS UNIVERSITY IN FUNDAMENTAL INTEGRATES ERC INTO CAMPUS CULTURE AND GAINS SUPPORT FOR INNOVATIVE ERC

SYSTEM UP STRONG MANAGEMENT SETS

ENVIRONMENT INSTITUTIONAL

COMMITTED FACULTY PARTICIPATION

SUPPORT TO ERC FROM UNIVERSITY

INPUT? **ERC?** TENURE SYSTEM VALUE ERC EXP? CR0SS-UNIVERSITY SUPPORT/ASSIST DOES ERC DIRECTOR HAVE TENURE SUPPORTS DISCIPLINARY RESEARCH UNIVERSITY CLIMATE DOES DOES

NSF S&T RESEARCH CENTERS PROGRAM OBJECTIVES

- Exploit opportunities in fundamental science and technology
- Increase transfer of knowledge from discovery to application and among sectors of society
- opportunities for future scientific and Provide special educational technical workforce

NSF S&T RESEARCH CENTERS MAJOR FEATURES

Science to be done will determine the size, structure and organization

Common features:

University based

* Educational components

Knowledge transfer components

Linkages to other sectors

NSF S&T RESEARCH CENTERS PROGRAM, FEATURES

- All Fields
- Single competition
- No predetermined topics
- Both Centers awards and Planning grants
- proposals, but not on the same topic Institutions may submit multiple
- management in NSF substantive divisions Central coordinating office; review and

Unexpected Benefits of Fundamental Research

- High-temp. superconductors
- Frog skin antibiotics
- Lasers
- NMR
- Biological pest control
- Fisheries manag. techniques
- Solar collectors
- Spell checkers

- Tunneling electron microscopes
- Critical minerals mining techniques
- BASIC
- Biotechnologies
- Fiber optic communications
- Artificial intelligence
- Artificial biol. membranes, organs
- Retroviruses

NSF S&T RESEARCH CENTERS PROGRAM PROPOSAL STATISTICS

o Full STC Proposals - 323

\$12.6M **s** 4.1B ***** \$2.4M Average Request (5 years) Total Requested (5 years) First-Year Average

Planning Grant Proposals = 258

o Number of Institutions = 205

o Number of States = 48 (+ D.C., P.R.)

3/14/88

REVIEW PROCESS MULTI-TIER

- NSF S&T Centers Office
- * Review and/or classification
- NSF STC Technical Coordinators
 - * Mail and/or panel review
- Site Visits
- NSF Assistant Directors
- Priority lists
- Single multidisciplinary committee
- Balance among fields
- * Competitiveness
- National Science Board

NSF S&T RESEARCH CENTERS PROPOSAL HEVIEW CRITERIA

- Intrinsic merit of the theme and research
- Research performance competence
- Utility or relevance of the research
- Appropriateness of the center approach
- Appropriateness of institutional and management plans and arrangements
- Effect of the Center on the infrastructure of science
- Quality of educational and training components
- Form and strength of linkages and knowledge transfer efforts

NSF S&T RESEARCH CENTERS PROGRAM REVIEW CATEGORIES

- Mathematics
- Computational Science and Engineering
- Cogn. and Inform. Sci./Art. Intell.
- Computer Science and Engineering
- Condensed Matter/Superconductivity
- Electronic and Optical Materials/ Interfaces
- Surface Science, Catalysis & Synthesis
- Polymers/Micro. and Nano. Structures
- Engineering
- Social and Behavioral Science
- **Biological Science**
- Molecular Sciences
- Others Physics/Astronomy
- Geosciences

NSF S&T RESEARCH CENTERS PROGRAM PROPOSALS PER REVIEW CATEGORY

21	12	32	17	21	27	25	17	12	29	46	19	29	14
Mathematics	Computat. Sci. & Eng.	Cog. & Inf. Sci./A.I.	Computer Sci. & Eng.	Cond. Matter/Supercon.	El., Op. Mats./Interf.	Surfaces/Catal./Synth.	Polymers/Structures	Engineering	Other Physics/Astron.	Geosciences	Molecular Sciences	Biological Sciences	Social & Behav. Sci.

NSF BUDGET SUMMARY FY 1987-1988 (DOLLARS IN MILLIONS)

Stower dustage of rue	FY 87 APPROP	APPROP	CHANGE	CHANGE FY88/87 AMOUNT CHANGE
RESEARCH AND RELATED ACTIVITIES	1,406	1,453	48	3%
U.S. ANTARCTIC PROGRAM	117	125	60	7%
SCIENCE AND ENGINEERING EDUCATION	66	139	9	40%
TOTAL, NSF	\$1,622	\$1,717 \$ 96	96	8%

IMPACT ON FY 1988 RESEARCH APPROPRIATION

o Protect: Mathematics

Minority Programs

Women's Programs

Graduate Students

o Slower growth of undergraduate activities

o Deferral of S&T Centers Initiative

Facilities stretched out; No new starts

o No increase in grant size/numbers

o Fewer new PYIs

NSF BUDGET SUMMARY FY 1988-1989

(DOLLARS IN MILLIONS)

	FY 88 APPROP	FY 89 REQST	CHANGE	CHANGE FY89/88 AMOUNT CHANGE	
RESEARCH AND RELATED ACTIVITIES	1,453	1,603	150	10%	
SCIENCE AND ENGINEERING EDUCATION	139	156	17	12%	
U.S. ANTARCTIC					

19%

\$333

\$1,717 \$2,050

150

150

TECHNOLOGY CENTERS

TOTAL, NSF

SCIENCE AND

PROGRAM

NSF S&T RESEARCH CENTERS PROGRAM FY 1989 PLAN

- New \$150 million appropriation
- Up-front, full funding (4-5 years) for about 15 Centers
- Projected award size: \$1-5M per year for up to five years
- Slow outlay pattern (over 7-8 years)

2/18/88

RATIONALE FOR THE SEPARATE APPROPRIATION NSF S&T RESEARCH CENTERS PROGRAM

- Clearly separate funding of STC activity from individual investigator support
- Provide reliable, stable support for the STC's first years
- Demonstrate to potential partners the Foundation's long-term commitment
- Take advantage of slow outlay rate

Hollings Centers Competition

presented by

Dr. Don Johnson, Director Industrial Technology Services National Bureau of Standards

NEW PROGRAMS AND DIRECTIONS AT THE NATIONAL BUREAU OF STANDARDS

March 1988

New Programs and Directions at the National Bureau of Standards

Introduction

The rapid loss of competitiveness of U.S. industry in international markets is an extremely serious problem with wide-ranging consequences for our material well-being, our security, and our political influence. Its causes are many, but among them certainly are the slow rate at which new technology is embodied in commercial products and processes, and the lack of attention paid to manufacturing. We need to compete in world markets with high-value-added products, incorporating the latest innovations, manufactured in short runs with flexible manufacturing methods. We need research, management, and manufacturing methods that support change and innovation.

Congress and the Administration have called upon the National Bureau of Standards to carry out a program of technology development and transfer in . collaboration with industry, universities, other federal government agencies, and with state and local governments. The National Bureau of Standards (NBS) is the one federal government agency that already supports industry and commerce directly with infratechnology services. Its contributions are vitally needed now to support rapid commercialization of technical innovations. NBS's leverage on innovation in industry and commerce has been significantly increased, and additional roles have been assigned to NBS to more fully use this unique government resource.

NBS is a small agency and its resources are quite small compared to the industrial and federal investment in research and development, or with the investment of \$800 million by the various states in technology transfer and support programs. The new programs being developed by NBS will be collaborative, highly leveraged, and serve as examples to be followed by others with greater resources.

National Institute of Standards and Technology

The legislative package for the Technology Competitiveness Act currently before the Congress, will assign four new major programs to the National Bureau of Standards and also change the name to National Institute of Standards and Technology. Not all facets are in place but the direction of change and the ensuing programs can be predicted. The long-standing mission of the National Bureau of Standards to provide for the measurement standards and data needs of the U.S. economy remains unchanged in the new legislation. However, the proposed new assignments will cast NBS in a new and different role working with a different constituency such as state and local economic development organizations and such federal agencies as the Small Business Administration, Economic Development Agency, and the International Trade Administration.

Technology is defined as technical information applicable to products and processes.

Many ideas originating in the American scientific and technical community are being commercially exploited in other parts of the world. We, as a nation, have been slow to capitalize on new technology developed from our own intellectual capability and to improve our manufacturing capability. In the past, small and mid-size companies have led U.S. industry in innovation. We must now determine how the federal government can support such companies in the development of improved manufacturing capabilities and the marketing of new, competitive products.

The NBS Director has decided to establish a new program at NBS (to become NIST) called "Industrial Technology Services (ITS)." This program will include the four proposed major activities: (1) Centers for the Transfer of Manufacturing Technology, (2) Industrial Extension Services, (3) an Advanced Technology Program, and (4) the Clearinghouse for State Technology Programs, which will be carried out by the Secretary's Office with support from NIST. Short descriptions of these four new programs follow.

Centers for the Transfer of Manufacturing Technology

The aim of the first part of the Industrial Technology Services (ITS) program is to bring modern automated manufacturing technology to small and mid-size manufacturing firms, that cannot compete in the international markets because their resources for research or technological improvement are insufficient. ITS will work with the state and local organizations, universities, and also with industry to develop twelve regional centers to achieve the transfer of modern manufacturing technology to these constituents. The program focuses on technologies appropriate to small businesses, e.g., automation of existing facilities with off-the-shelf equipment within the reach of the personnel, finance, and engineering capability of such companies. The program will be a cost-sharing partnership where the funding provided by ITS will be matched by funds from other sources such as state governments, industry, and academic institutions. The location and function of each transfer center will be coordinated with the needs of the local or regional industry.

The program emphasizes "hands-on" experience. Senior managers will be invited to the center to observe and participate in demonstrations of automatic equipment that will be advantageous to their companies. They will be assisted in choosing the proper equipment, in selecting a reputable supplier, and in acquiring and training the staff that will operate the equipment. The program will encourage a partnership with academic institutions, with special focus on training of workers that could be provided by community colleges or vocational schools. ITS will provide funding of up to \$3 million per year, ramped in years 4, 5, and 6, to be matched dollar for dollar from other sources. At the end of three years, each center will be reviewed to determine if its transfer of technology to industry justifies its continuation. At the end of six years, government funds will drop to zero, and the center should be selfsustaining. Two regional centers will come on line this year. ITS will make available engineers trained in industrial manufacturing and familiar with the Automated Manufacturing Research Facility (AMRF) at NIST to help start and operate the centers.

Industrial Extension Services

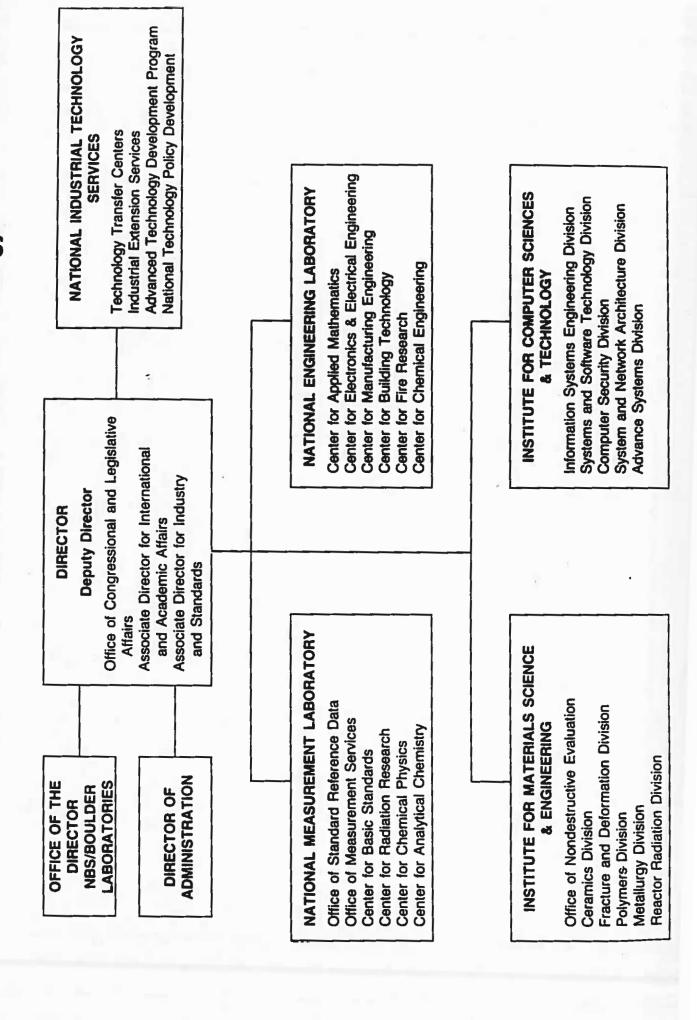
The second part of the Industrial Technology Services program involves ITS in Industrial Extension Services, with the intent to make federal technology available to small and mid-size businesses through existing state and local extension activities. A number of federal agencies now sponsor extension programs of various kinds; the Economic Development Administration oversees about 40 centers; the International Trade Administration operates its trade assistance adjustment centers for companies disadvantaged by imports. Most extension services, of which there are thousands, do not deal with sophisticated technology but concentrate their efforts on business advice and business applications. For the most part, organizations providing extension services have neither the technically trained personnel nor the technical resources needed to help a small company just entering the high technology field. The role of ITS will be to provide the central federal coordination for extension services, working with federal agencies and federal laboratory consortia to carry out technology transfer throughout the extension program. ITS will also organize an invention evaluation service that will test the technical and economic feasibility of inventions. ITS will provide help in structuring workshops and will bring businesses of similar interest into networks for the joint solution of problems. A pilot effort to network local biotechnology companies and supporting firms has been operating successfully at NBS for a year. Experience gained from this pilot program will benefit the NIST efforts in other technologies.

Advanced Technology Program

The third part of the Industrial Technology Services program will accelerate the commercial development of technology. This program will function quite differently from the others and will address a different but related constituency. In the Advanced Technology Program, ITS will provide funding to and will encourage formation of industry consortia aimed at developing generic technology and improving manufacturing processes. This program will focus on developing new products and in making major improvements in existing manufacturing processes. This program therefore complements the Small Business Innovative Research Program (SBIR) which addresses research and development up to the prototype stage. The formation and funding of consortia under this program will be similar, except in size, to a project recently proposed to DOD by the semiconductor industry, where 51 companies have formed a research consortium to find ways of improving the manufacture of semiconductor chips.

Clearinghouse for State Technology Programs

The fourth part of the Industrial Technology Services program deals with policy. Despite much debate there is little likelihood that a national industrial policy will be developed. However, a de facto technology policy is being developed at the state and local level by governors, county executives, and mayors. These leaders establish policy when they allocate public funds to particular development projects. The total investment is large and the influence on the overall direction of U.S. high technology firms and, hence, their impact on the nation's balance of trade is substantial. Under the new program ITS will provide technical and analytical support to state and local


governments as they decide future investments in technology programs. The effort will be a shared assignment between the Department of Commerce (DOC) and ITS working through the Office of Intergovernmental Affairs.

ITS will develop a network of technical contacts within the state and local policy level staff, and will collect information on current programs and provide a technical analysis. A first report to Congress is scheduled for January 1, 1989. Meanwhile dialogue will continue and workshops will be offered in an effort to make federal resources available to aid in this decision-making process.

For further information, write or call:

Industrial Technology Services National Bureau of Standards Gaithersburg, MD 20899 301-975-2122

National Institute of Standards and Technology U.S. DEPARTMENT OF COMMERCE

Status of Key R & D Issues in the Federal Budget: An Overview

presented by

Dr. Kenneth G. Wilson Nobel Laureate in Physics, 1982

The National Science Foundation in the 1990's by Kenneth G. Wilson

I am writing this paper to urge increased support for the NSF based on my own past benefits from government support and the urgent need of today's brightest young scientists.

The National Science Foundation has acquired many new responsibilities related to economic development over the last two decades. Equally important, many simultaneous revolutions in science are competing for support from NSF. The budget for the NSF is woefully inadequate to meet demands on it, in part because it does not have as strong political support as does the NIH, the Department of Defense, or domestic social programs. While all agencies supporting basic research (NIH, DOE, NASA, DoD) need some growth for their basic research, NSF is especially visible right now because of the proposal to double its budget.

I became a scientist because my father (E. Bright Wilson, Jr.) was a scientist; he was one of the leaders of the scientific support for defense during World War II. I was a graduate student in the late 50's, at the time of the launch of Sputnik. I started my Nobel Prize winning research as a graduate student (supported by an NSF graduate fellowship), and pursued that research for fifteen years through the 1960's -- a golden age for U.S. science. I went on to publish the two papers cited by the Nobel committee in 1972.

The focus on science following Sputnik got me started on an extraordinary career. I urge that a new boost be given to science over the next few years. I urge this so that the scientists of today will have the same opportunity to compete for Nobel Prizes that I was given in the 1960's.

I will describe briefly the scientific quest that I was privileged to be part of, due to the extraordinary government support of science in the 1960's. When I began my research, the basic constituents of matter were known to be electrons, protons, and neutrons. These constituents combine to make up atoms, the basic units of the chemical elements. It was already known that protons and neutrons have complex structures, but the nature and causes of this structure were a mystery. Then during the 1960's, a world-wide community of high energy physicists unravelled the secrets of the proton and neutron. Countless experimental discoveries at particle accelerators created new puzzles to unravel. Attempts to understand these experiments led initially to fragmentary and seemingly contradictory explanations.

By the middle 70's the proton's structure had become clear; it and the neutron are made up of three objects called quarks, held together by a microscopic version of string. Equations of motion for both quarks and string had been established. The discovery of quarks and string, and the equations describing them, is as basic a scientific discovery as the discovery of Newton's Laws in the 1600's or the Laws of Electricity in the 1800's.

I was fully involved in these discoveries. Moreover, this was followed by my trip to Sweden to receive the Nobel Prize and the extraordinary respect from scientists and laymen alike that this award brings.

Many young scientists in the 60's received their graduate training by participating in research such as mine; these scientists today are faculty members at universities in every state in the U.S. The scientific opportunities awaiting them and their graduate students today are even more spectacular than when I started out. Telescopes and satellite observatories have completely altered our view of the universe, uncovering explosive events that consume entire galaxies of stars, or tiny pulsars that send pulses to earth with greater regularity than any earthbound clock. The current excitement over high temperature superconductors is only a tiny indication of a vast revolution in materials ranging from polymers and optical fibers to drugs and catalysts. This revolution is entering a new stage due to microscopes which can see individual atoms, and new techniques (such as molecular beam epitaxy) for building new materials, atom by atom. The continuing unfolding of the molecular basis of life was illustrated most recently in the search for the gene responsible for cystic fibrosis. Critical for human survival is the growing investigation of the global environment and climatic change.

Moreover, the accelerating computer revolution is profoundly extending the scope of science. It used to be that the most fundamental question asked by scientists was "What is this object made of"? Now, an equally important question is "How does this system work"? For example, scientists first learned that proteins (crucial components of life) are made up of amino acids. Now the exciting question is "How do entire proteins fold to achieve their biologically active structure"? The most powerful computers (supercomputers) are needed to manage all the data that such questions involve. The vast challenge of computer-aided design, engineering and manufacturing, is to understand and control the life history of all kinds of products -- from manufacture to final disposal as waste -- before they leave the drawing board. Computer networking is creating a revolution in communications as profound as the invention of printing 500 years ago, leading to instantaneous national and global scientific collaborations and the instantaneous capability to selectively search man's entire storehouse of knowledge.

The last twenty years has seen the emergence of regions of high technology economic development such as "Route 128" or "Silicon Valley" where world class universities provide highly trained manpower and the fruits of basic research to a mix of large and small companies. A major challenge to the next President is to encourage high technology growth throughout the country in collaboration with state Governors and their high technology economic development programs. I believe that many more high technology zones can be identified than are presently recognized, each with a different range of specialties benefitting from the many scientific and engineering revolutions now underway. At the heart of almost every such region there are university faculty of high quality with potential Nobel Prizewinning research goals. Their research can inspire successive generations of students to the creativity a modern high technology regions requires.

Unfortunately, the budget of the NSF is now far too small to meet the needs of even the most outstanding research projects. Scientists from all parts of the country prepare proposals for new research investigations, proposals that NSF program directors are eager to fund but either reject outright, or drastically underfund because of budget shortfalls. It is especially difficult for young scientists starting their careers, or scientists outside the most prestigious Ivy League or California universities to compete against the highly productive ongoing research programs at these universities, although even Nobelists at Ivy League schools, working on high temperature superconductivity, are being cut back too.

The difficulties at the NSF reflect a dramatic rise in budgetary pressures at the NSF over the past two decades. The sources of these pressures are, first, the transfer of major defense-funded programs to the NSF (such as the Materials Science Centers). Then, there was the growth of engineering research and graduate training programs in critical areas like electrical engineering and computer science to rival the science programs at Then, there was an explosive growth in the cost of research instrumentation, fueled by a rapidly growing industrial market for scientific instruments. Then, there was the continuing growth in the power of computers and the need to supply and update computers of all kinds for research. Most recently, the NSF has started its programs of engineering research centers, supercomputer centers, and the proposed science and technology centers, all of which are essential to support interdisciplinary groups studying complex systems.

The Reagan administration has proposed that the NSF budget be doubled over the next five years. I believe what is needed is to triple, not just double, the NSF budget. This goal is, of course, very difficult to accomplish in an era of massive deficits. There is broad but shallow support for the NSF in Congress. There is a growing awareness of the NSF among state governors as they focus on needs for high technology development within their own states. However, there has been no powerful political voice supporting NSF in Congress in comparison with the support heard for the NIH, or defense, or major social programs. The university scientists and engineers who are supported by NSF are a minute fraction of the body politic, fragmented and politically naive. The role of these university faculty in economic development is poorly understood by the scientists themselves, as well as most laymen. Even the Congress is skeptical, being very concerned about the ease with which competitors abroad take advantage of U.S. research results.

There are obvious and valid concerns about the effectiveness of technology transfer from U.S. universities to U.S. industry, especially in the face of the massive trade deficit. It is, I believe, extremely dangerous to starve U.S. science because of these concerns. First, virtually the entire product offerings of U.S. industry are redesigned over a period of a decade or two, and the technology base for these designs is vastly different today than it was twenty years ago. Given the scientific revolutions underway in such key areas as materials and biotechnology, the advances in industrial technology worldwide over the next twenty years could be even more dramatic and the dangers if the U.S. falls behind are, I believe, extreme even by comparison to today's deficits. Second, there are areas where university/industry technology transfer works well, for example, technology transfer to U.S. military industries. Third, as Erich Bloch (Director of the NSF) has emphasized, whatever the causes of U.S. competitive failures in high technology -- from the overpriced dollar to the conservatism of middle management in large U.S. companies, to actions by our competitors abroad -- one has to look to university faculty to take the entrepreneurial lead in improving technology transfer to U.S. civilian industries. Starving U.S. science so that there is no technology to transfer is not, I think, the best strategy to pursue.

The scientists throughout the U.S. are ready; the time is ripe and many revolutionary research possibilities await them. All that is missing is the political will to provide them with support. This support is amply justified by the need to accelerate high technology growth surrounding research universities throughout the country. Economic growth is now the key to deficit reduction as well as continued global leadership by the U.S.

I have set aside half of my time to work on science policy issues over the next few years. I am moving from Cornell to the Ohio State University, partly in hopes of being more involved in the many practical issues of high technology advance. I am ready to help in any way I can to bring about another Sputnik-like advance in the support of science.

The National Science Foundation "Overview of NSF Activities and Budget"

presented by

Mr. Raymond Bye, Director
Office of Legislative and Public Affairs
National Science Foundation

NGA PRESENTATION

April 26, 1988

appropriation for Science and Technology Centers. The request reaffirms the Administration's commitment to double support for Chart 1: NSF Budget Summary FY 1988-1989
The FY 1989 Budget Request is \$2.05 billion, an increase of more than 19 percent over FY 1988. It includes a proposed new

NSF, primarily for academic basic research.

NSF BUDGET SUMMARY

(DOLLARS IN MILLIONS) FY 1988-1989

APPROP	위 88
REQST	FY 89
AMOUNT	CHANGE
CHANGE	FY89/88

RESEARCH AND RELATED ACTIVITIES

1,453

1,603

150

10%

SCIENCE AND

ENGINEERING EDUCATION

139

156

12%

U.S. ANTARCTIC

PROGRAM

SCIENCE AND

TECHNOLOGY CENTERS

125

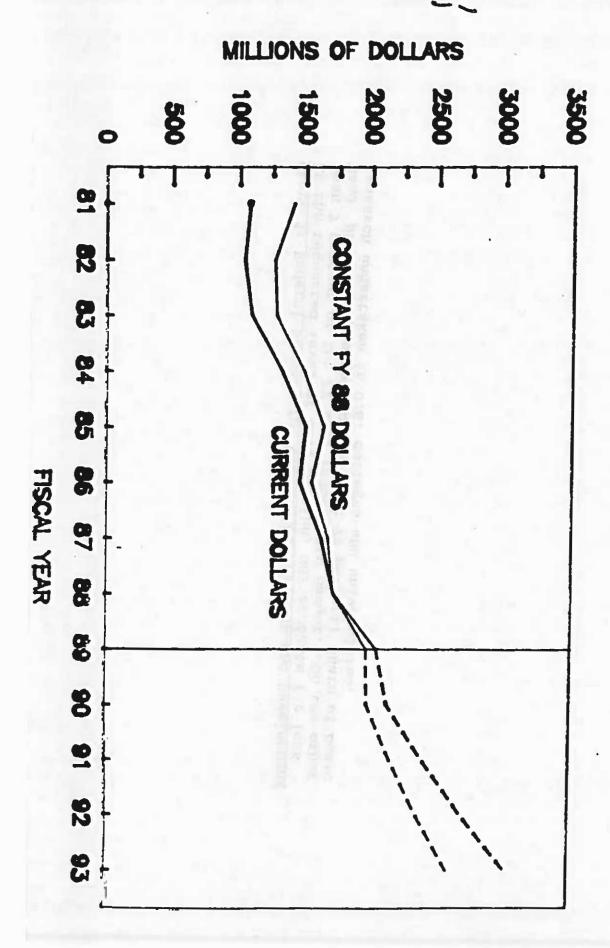
16

13%

TOTAL, NSF

\$1,717

\$2,050 \$333


150

150

N

19%

Chart 2: NSF Budget Estimates, FY 1981 - FY 1993
This chart shows the planned doubling of the current budget by
FY 1993, a return to the plan put forth by the Administration last year.

NSF BUDGET ESTIMATES FY 1981 - FY 1993

than 3 percent of the FY 1989 Federal R&D Budget. On the other hand, NSF funds a significant (about 28 percent) share of basic research undertaken in U.S. colleges and universities. Chart 3: Federal Support for Conduct of Research and Development At the requested level of \$2.1 billion, NSF accounts for less

FEDERAL SUPPORT FOR CONDUCT OF RESEARCH AND DEVELOPMENT NSF SHARE, FY 1989

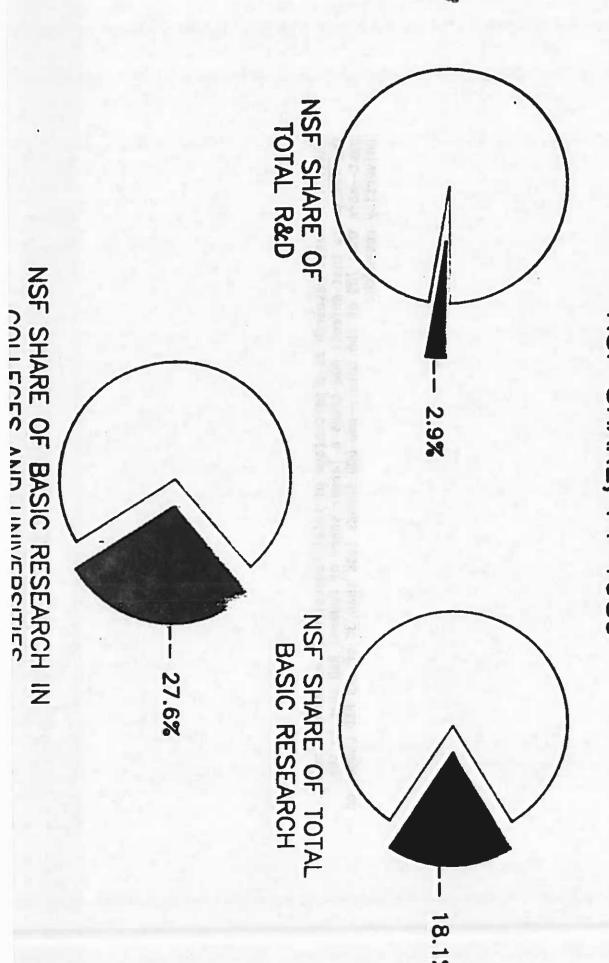


CHART 4: Sasic research as a percentage of total Federal R&D has been dropping.

One reason is that defense now takes a larger share of Federal R&D than in the
past--more than 70% of the total--and DOD spends less than 3% of its R&D budget on university research.

FEDERAL BASIC RESEARCH AS A PROPORTION OF TOTAL FEDERAL R&D, BY CATEGORY

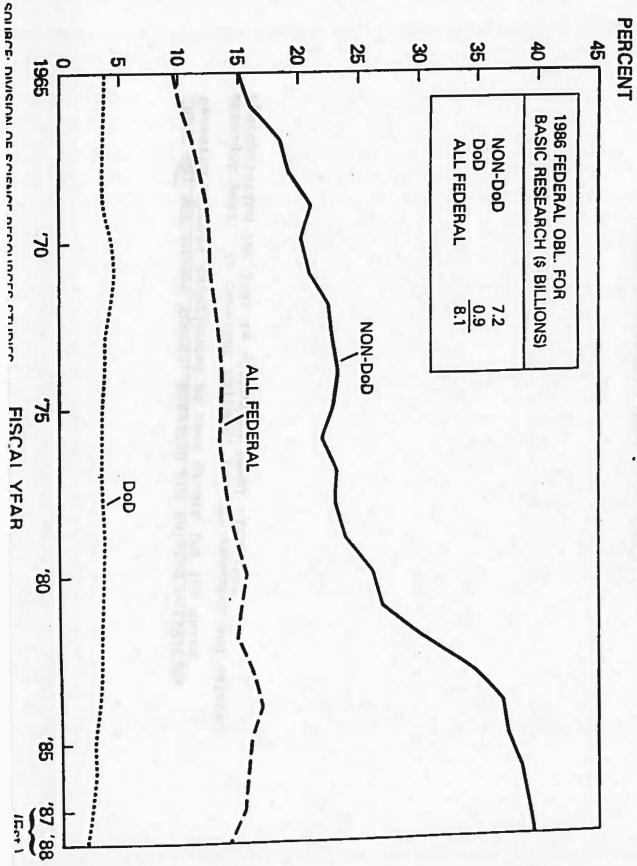
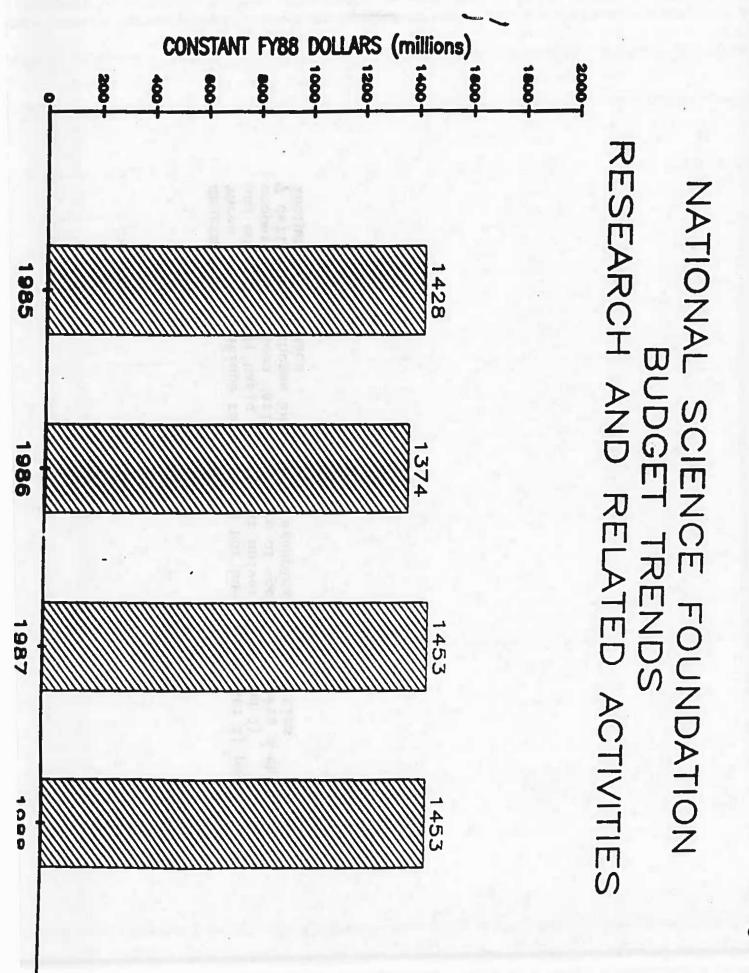



Chart 19: NSF Budget Trends. Research and Related Activities Research support experienced no real growth for the third

straight year. In constant dollars, the NSF research and related appropriation for 1988 is virtually level with 1985.

Three themes continue to shape the NSF budget request: 1) people and education; 2) basic research at universities; and 3) cooperation between various sectors of society. Charts 6 through 9 define these themes and provide examples of activities Charts 6-9 included under each.

1989 STRATEGIC THEMES

- 0 **Education and Human Resources**
- 0 Disciplinary Research and Facilities
- o Centers and Groups

EDUCATION AND HUMAN RESOURCES

- o Two Main Aspects:
- Increasing supply of scientists and engineers for future
- Broadening participation
- o Women, minorities, disabled
- o Institutions
- o Geographic regions
- Crosses all Foundation organizations
- Examples: Graduate Fellowships

Presidential Young Investigators

Minority Research Initiation

Research Opportunities for Women

Minority Scholars

Special Postdoc Programs

EPSCoR Research Improvement in Minority Institutions

DISCIPLINARY RESEARCH & FACILITIES

- Increase Grant Size and Number:
- Support of students and postdocs
- Instrumentation
- o New or Expanded Research Areas:
- Superconductivity
- Materials chemistry
- Biological communication
- Manufacturing systems
- Parallel computingCosmology
- o National Facilities
- National Supercomputer Centers and NSFNET strengthened
- VLBA construction continues
- Physics facility upgrades at Michigan State, Cornell and Indiana come online
- Antarctic aircraft refurbishment -- research ship, laboratory space,

CENTERS AND GROUPS

FY 1989

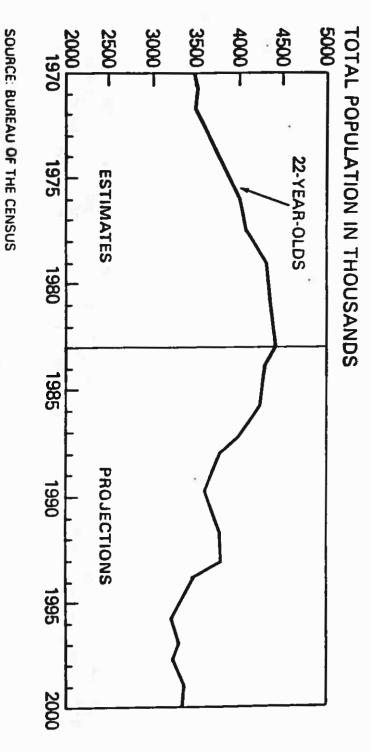

- o Continuing Centers
- Materials Research Laboratories
- Engineering Research Centers
- Interagency Plant Science Centers
- o Groups
- Materials, mathematics
- Global geosciences
- Biotechnology, ecology
- Emerging engineering technologies
- o Separate S&T Centers Initiative

CHART 10: Concerns about the future supply of scientists and engineers are to a large degree attributed to the fact that the number of 22-year-olds has been dropping steadily. Unless more undergraduates are attracted to S & E fields, the number of S & E degrees must decline also.

MOTTALIUROS IS U BHT IN SOLD BABY AS 10 SETAINTS

ESTIMATES OF 22-YEAR-OLDS IN THE U.S. POPULATION

CHART TO

senior scientists -- are rising sharply. Across the Foundation, the FY 1989 increase will support over 14,000 additional people graduate students, undergraduates and pre-college teachers. The actual numbers of current and potential scientists and engineers senior scientists and engineers, postdoctoral associates, In FY 1987, NSF grants and fellowships supported over 47,000 Chartis: NSF Support for Human Resources creativity. current and future source of scientific and technological - a 30 percent increase over FY 1987. supported -- at all levels from high school students through These people represent the

SUPPORT FOR HUMAN RESOURCES NATIONAL SCIENCE FOUNDATION

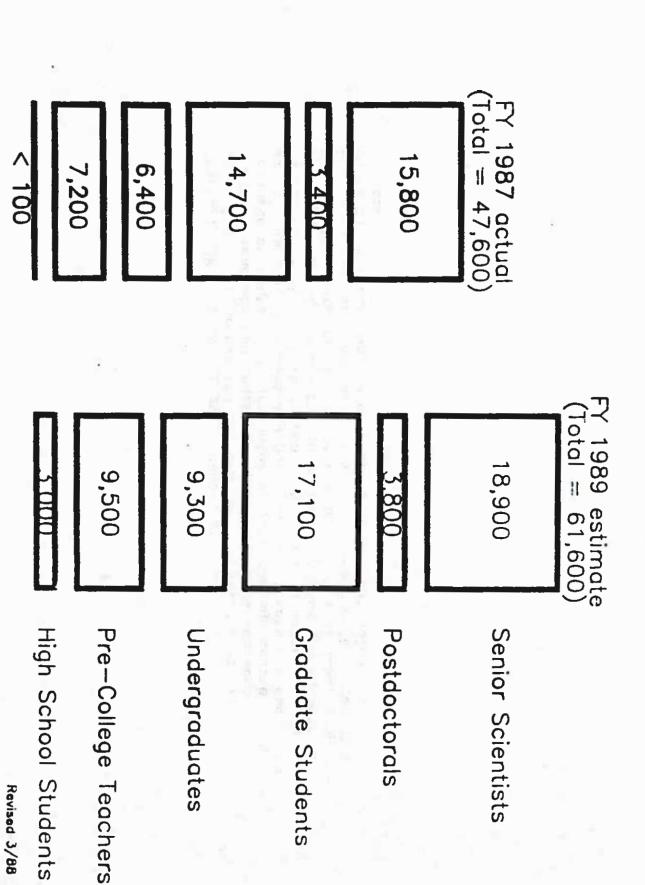


CHART 12: The four appropriation accounts in the FY 1989 Request are: Research and Related, Science and Technology Centers, the U.S. Antarctic Program, and Science and Engineering Education.

This chart provides a breakout of our largest account, Research and Related Actvities.

NSF BUDGET SUMMARY

FOR

RESEARCH AND RELATED ACTIVITIES

FY 1988-1989 (DOLLARS IN MILLIONS)

APPROP REQST CHANGE **88** FY 89 FY89/88

	,									
RESEARCH & RELATED ACTIVITIES	PROGRAM DEVELOPMENT AND MANAGEMENT	INTERNATIONAL AFFAIRS	SCIENTIFIC, TECHNOLOGICAL AND	AND ENGINEERING	COMPUTER AND INFORMATION SCIENCE	ENGINEERING	SCIENCES	BIOLOGICAL, BEHAVIORAL AND SOCIAL	GEOSCIENCES	MATHEMATICAL AND PHYSICAL SCIENCES
\$1,453	84	44		124		171	266		291	\$ 473
\$1603 10%	95	51		149		195	289		321	\$ 503
10%	13%	16%		20%		14%	%		10%	6%

<u>Chart 13: U.S. Antarctic Program</u>
<u>Scientific research continues to be the principal expression of U.S. national interest and policy in Antarctia.</u>

U.S. ANTARCTIC PROGRAM

CHART 13

FY 1989

- Ó Increases from \$125 M in FY88 to \$141 Z
- 0 Research program strengthened
- 0 Continue with acquisition of ice—breaking research ship
- LC-130 refurbishment program continues
- Science enhancement at McMurdo

college teachers and high school students in programs designed to increase their ability to teach and learn science and education will have increased tenfold since FY 1983 (Chart 16). We estimate that in FY 1989 NSF will support over 12,000 pre-Charts 19613: Science and Engineering Education With the FY 1989 budget request, NSF funding for precollege areas of primary and secondary school science and mathematics the growing awareness that America is not competitive in the mathematics. This emphasis on pre-college education addresses

SCIENCE AND ENGINEERING EDUCATION

(FY 1989)

Increases from \$139 million to \$156 million

o Summary by level:

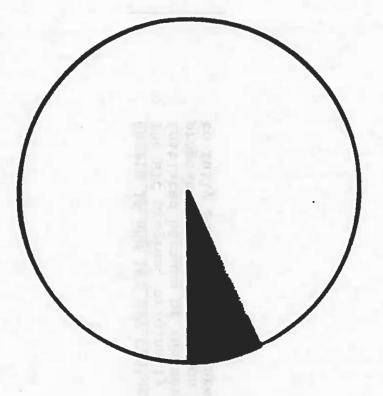
Precollege \$108

Undergraduate 24 M

Graduate 24 M

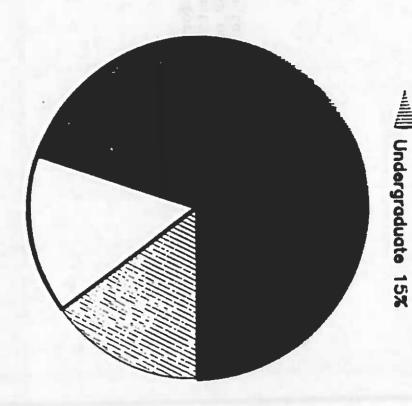
0 100 Additional New Graduate Fellows (Increased from 760 to 860)

Double support for Comprehensive Regional


Centers for Minorities

o Instructional Materials for Middle School Mathematics

SCIENCE AND ENGINEERING EDUCATION SUPPORT BY EDUCATIONAL LEVEL FY 1983 - FY 1989


Pre-college 6.9%

Grad/Postdoc 93.1%

Pre-college 69.7%

Grad/Postdoc 15.3%

FY 1983 (TOTAL = \$16.09 MILLION)

ייייייי ליטטט לדטדוי

Charts 16 and 18: S&T Centers
The STC program, originally proposed for FY 1988 funding, was not initiated because of the severely constrained appropriation. We propose a new appropriation in FY 1989 of \$150 million for STCs, to fully fund 12 to 15 centers for up to five years.

S&T CENTERS

FY 1989

New \$150 Million Appropriation in FY 1989

b Up-front, fully funded Centers

Slow outlay pattern

Initiate 12 to 15 centers in FY 1989

Projected award size: \$1-5M per year for up to 5 years

Merit review

Topics not targeted by NSF in advance

S & T CENTER PROPOSAL STATISTICS

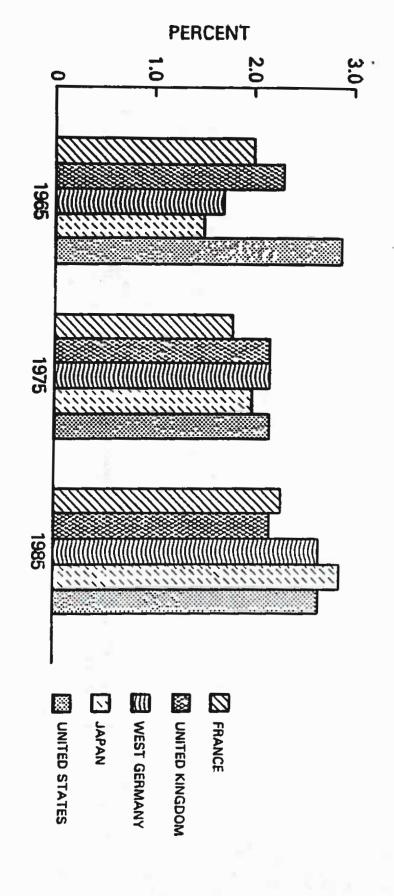
CHART 19

Receipt Date: January 15, 1988

Proposals Received: 325

Number of Institutions: 122

Number of States: 42


Total Requested: \$4.1 Billion (for 5 years)

Average Total Request: \$12.6 Million

First Year Average Request: \$2.4 Million

CHART 18: In constant dollars, U.S. R&D spending rose 65% between 1970 and 1986. But in the same period German spending doubled and Japanese spending tripled.

R&D EXPENDITURES AS A PERCENT OF GNP FOR SELECTED COUNTRIES: 1965, 1975, AND 1985

The National Science Foundation
"Advanced Scientific Computing and Networking"

presented by

Dr. Charles Brownstein, Assistant Director Directorate for Computer and Information Science and Engineering

NATIONAL SCIENCE FOUNDATION SUPERCOMPUTER AND NETWORKING ACTIVITIES: OVERVIEW

DR. CHARLES N. BROWNSTEIN

ACTING ASSISTANT DIRECTOR, COMPUTER AND INFORMATION SCIENCE AND ENGINEERING NATIONAL SCIENCE FOUNDATION

NATIONAL GOVERNOR'S ASSOCIATION WORKING GROUP ON STATE INITIATIVES IN APPLIED RESEARCH

> APRIL 29,1988 WASHINGTON D.C.

QUA (TREM)

NSF SUPERCOMPUTING AND NETWORKING ACTIVITIES

• NATIONAL SUPERCOMPUTER CENTERS

JVNC (PRINCETON)
CNSF (CORNELL)
PSC (PITTSBURGH)
SDSC (SAN DIEGO)
NCSA (ILLINOIS)

NSFNET

NSFNET BACKBONE (MERIT) AND INTERNET

SUPERCOMPUTER CENTERS/ NSFNET

- Multi-Institutional Partnerships
 (Federal/State/Industry/University)
- Services to Researchers
- Multiple Goals, Motivations, Needs, Resources
- Matrix of Relationships Shapes Policy, Action, Outcomes

HISTORY:

Phase I - FY84-87

Goal - Access to Supercomputers for NSF Grantees through PDs

Method - NSF bought blocks from Boeing, Minn., Purdue, Bell, CSU, Digital Prod.

Result - 932 Projects, 21K CPU hours

Cost - \$23M

CURRENT EVENTS:

Phase II - FY85-90

Goals - Continue Access and Impact Science
Train/Educate
Stimulate US Computer Industry

Methods - Establish dedicated Centers (5)

Highly leveraged

Leading edge machines

National Network

Open to all researchers

Encourage: Innovation,

Parallelism, Tools,

Industry/University

collaboration,

Multi-disciplinary research

Results - About 150K CPU hours/year
6000 researchers on 2000 projects
3000 trained
1000 papers and growing
Growth in high-end academic
computing

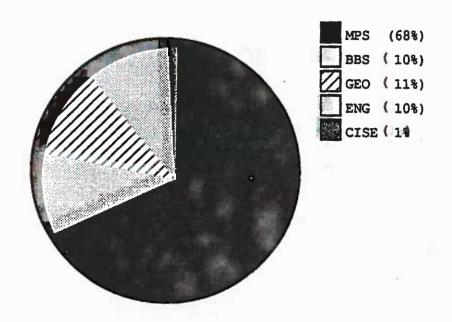
Cost - \$40-50M/year OSF alore)

National Supercomputer Centers Affiliated Institutions

- 1																										
JWNC	Brown	Cohmbia	Harvard	Inst. for Adv. Shady	MT	2	Pern State	Princeton	Putoers	Artzona	Colorado	Pem	Pochester	Nilnet of Tach	Stevens inst. of Tech.	Med & Den of N.										74
PSC	CMU	Case Western	Drexel	Duke,	Florida	Georgia Tech	Johns Hopkins	Letigh	Maryland	Mehipan	Mehigan St.	N. Carolina St.	Northwestern	Orio St.	Perm	Penn St.	Pittsburgh	Rochester	Temple	N. Carolina	Ternessee	Virginia	Washington U.	W. Virginia	Wisconsh	Yale
CNSF	CUNY	Clarkson	Duke	Johns Hopkins	Lousiana St.	SS.	N. Carolina St.	Northwestern	Perm St.	E	Rockefeler U.	SUN	Syracuse	Texas A&M	Ϋ́O	Delaware	Florida	Ilfnois	Massachusetts	Nebraska	N. Carolina	Pochester	Ternessee	Virginia Poly.	Washington St.	
NCSA	Clemson	3	Gallaudet	OMS	Georgia Tech	Harvard	Έ	Indiana	New Mexico St.	NYS.	N. Dakota St.	Northwestern	Notre Dame	Oldahoma St.	Oregon St.	Penn St.	SU	Stanford	Vanderbilt	Alaska	Arkansas	U. Calif.	Chicago	Colorado	Delaware	•
SDSC	Agouron Inst.	Cal Tech	NCAO	Scripps	Salk inst	San Diego St.	Stanford	Havail	Maryland	Michigan	OSO	. ntan	Washington	Wisconsin	U. Calif.(9 campuses)	Sw Fisheries Ctr					6					

ALLOCATIONS

- Open to all researchers, NSF and others
- Serves the national research community, with no set-aside for local researchers
- All allocations are done at the five NSF centers, not at NSF
- Panels of scientists from many disciplines make decisions
- Research institutions can request block time for small start-up research or education/training purposes


OVERVIEW AND STATUS OF SUPERCOMPUTING CENTERS

Five National Centers Fully Operational and Utilized

Since 1986:

- · 6000 accounts authorized
- · 2000 projects completed
- 105 training sessions (2743 participants)
- 107 research workshops (2831 participants)
- · 677 attributed published research papers

Disciplinary Distributions of Use (by NSF Directorate)

TRAINING AND EDUCATION

TRAINING AT CENTERS

2-3 DAY BEGINNER COURSES

SPECIALIZED COURSES - GRAPHICS, WORK-STATIONS, NETWORKS, ETC.

OFF-SITE AT ACADEMIC AFFILIATES, CON-SORTIUM MEMBERS

ON-LINE TRAINING"

TO DATE, OVER 100 OF THESE COURSES TRAINING NEARLY 3000 RESEARCHERS

SUPERCOMPUTER SUMMER INSTITUTES

INSTITUTES IN FY85 (3), FY86 (6), FY87 (8), NSF AND OTHER AGENCIES HAVE FUNDED ~\$1.5M

COMPETITIVE SOLICITATION

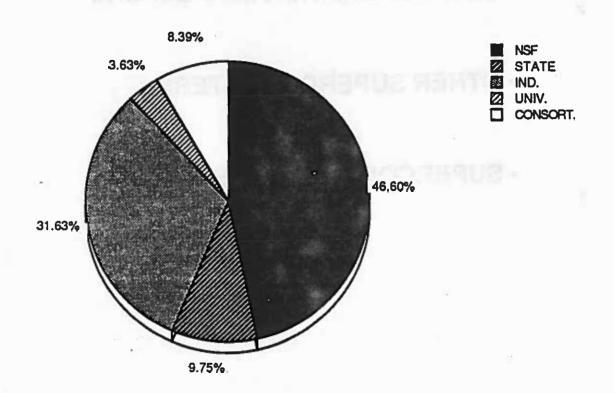
AWARDS TO NATIONAL CENTERS AND OTHERS

2 WEEK INTENSIVE TRAINING/EDUCATION FOR YOUNG RESEARCHERS

RAISING OF AWARENESS

600 ATTENDEES TO DATE

STUDENT TRAVEL/PERDIEM PAID BY NSF


EMPHASES

SCIENCE/ENGINEERING APPLICATIONS
PARALLEL AND VECTOR TECHNIQUES
LIBRARIES
GRAPHICS
NETWORKING

EACH STUDENT RECEIVES ADEQUATE SUPER-COMPUTER TIME TO FINISH A PROJECT. MOST BRING WORKING FORTRAN CODES FOR CONVERSION AND OPTIMIZATION.

SUPERCOMPUTER CENTER COST SHARING

(% OF TOTAL OF \$88.2M IN FY 1988)

SUPERCOMPUTING ISSUES

- ASSESSMENT
- UPGRADES (CHOICE/COST)
- NEW GENERATION MINI-SUPERS
- OTHER SUPERCOMPUTERS
- SUPERCOMPUTER RESEARCH

OVERVIEW AND STATUS OF SUPERCOMPUTING PROGRAM

General Directions

- · Maintain NSF Centers
- Make up deferred acquisitions in FY 1989
- Begin upgrades in FY 1990
- · Improve program balance
 - increase research on computational methods
 - support use of new technologies
- · focus on highest capability
- · focus on greatest research needs

OVERVIEW AND STATUS OF NETWORKING PROGRAM

PROGRAM GOALS

- BROADEN ACCESS TO RESEARCH RESOURCES
 (initially Supercomputer Centers, now to unique computing and data resources, other researchers)
- BROADEN ACCESS TO TEACHING RESOURCES
- INCREASE EFFICIENCY OF FEDERAL RESEARCH NETS
- ADVANCE STATE-OF-ART OF NETWORK TECHNOLOGY
- ADVANCE STATE-OF-ART OF NETWORK APPLICATIONS AND SERVICES

NETWORK COMPONENTS

- PEOPLE
- COMPUTERS
- SOFTWARE
- DATA RESOURCES/ INFORMATION
- · LANS, CANS, RANS
- LINKS AND SUBNETS
- NATIONAL INTERNET BACKBONE
- INTERNATIONAL LINKS

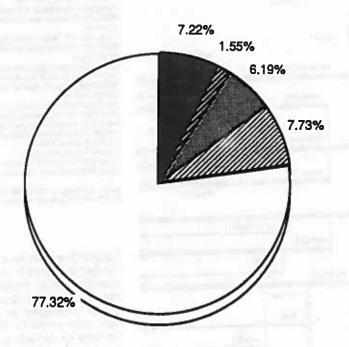
OVERVIEW AND STATUS OF NETWORKING PROGRAM

NSF NET STRATEGY

- PROVIDE RESEARCH SERVICES (Using professional manager)
- CONDUCT ADVANCED RESEARCH
- SHARE FEDERAL AGENCY RESOURCES (Promote Internet)
- ADVANCE STANDARDS
- LEAD AS PER FCCSET RECOMMENDATIONS

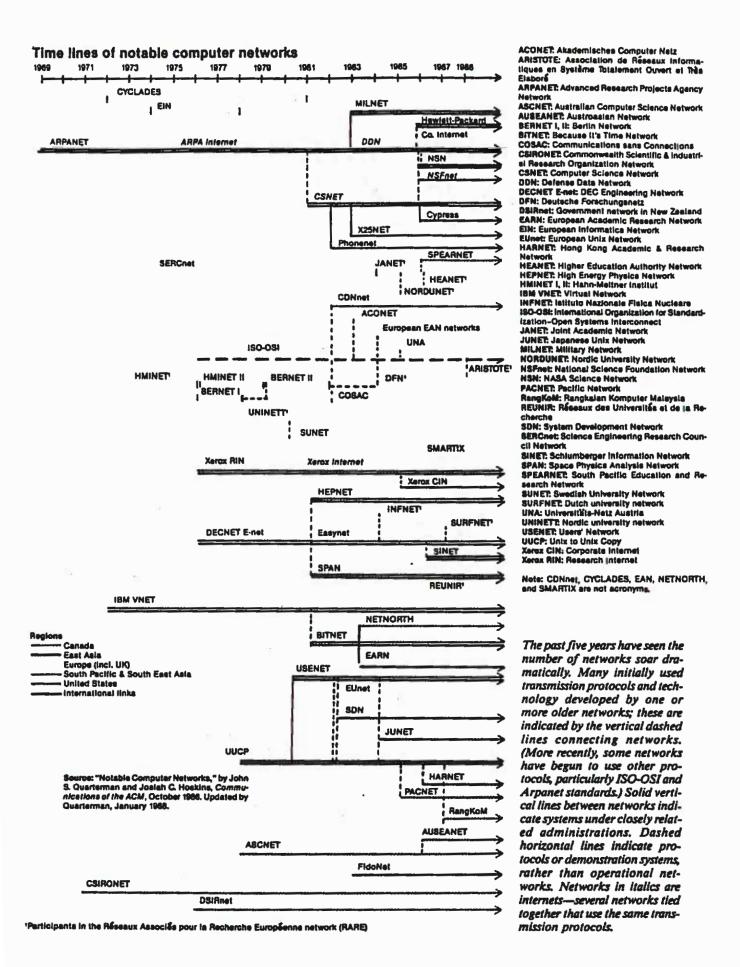
OVERVIEW AND STATUS OF NETWORKING PROGRAM

NSFNET ORGANIZATION THREE-LEVEL HIERARCHY

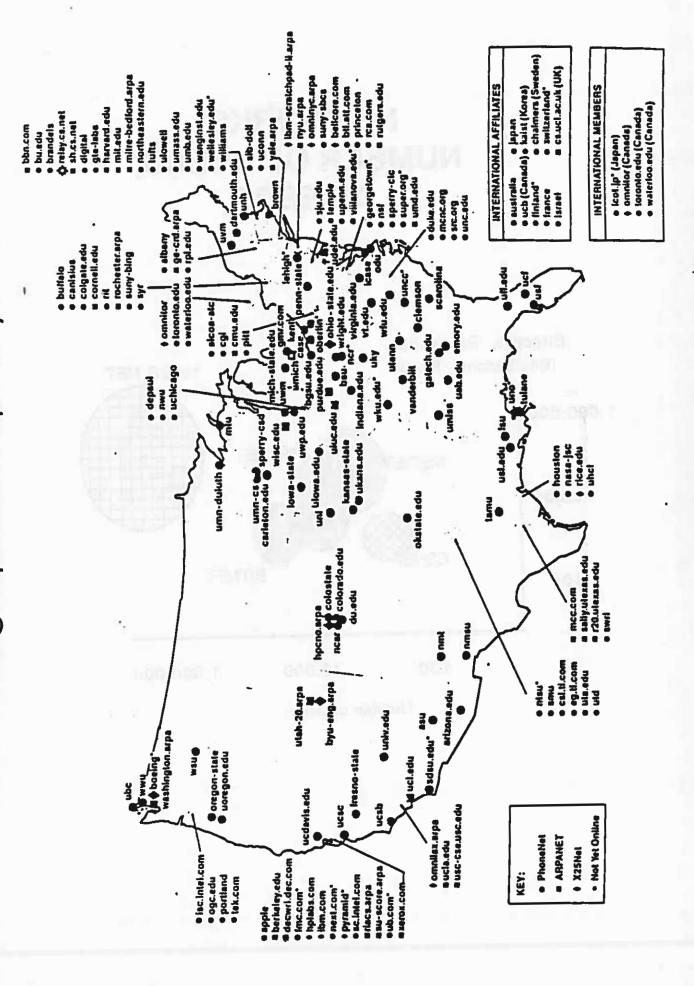

- NSFNET BACKBONE
- SUPERCOMPUTER CONSORTIUM NETS,
 REGIONAL, DISCIPLINE NETS
- · CAMPUS NETS

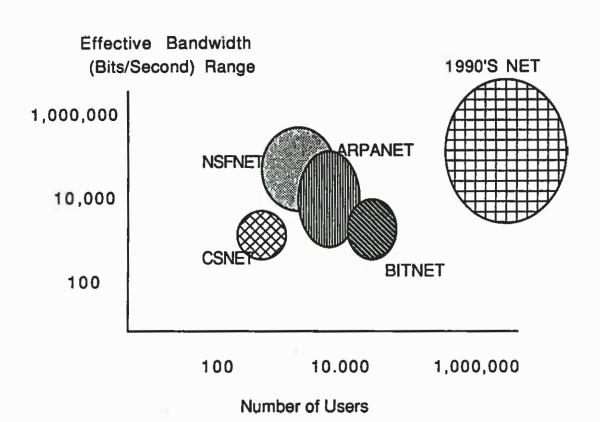
NYSERNET (Cornell University) Sonsortium Network ranet (University of Maryland) Supercomputer Center MINSC Merit (University of Michigan) 100 SE SQUINET (Rice University) Illhois-Urbana-Champaign) **NSFNET** MIDNET (University of Nebraskia - Lincoln) Regional Network plus Supercomputing Center USAN (National-Office Atmospheric Res Westnet (Colored ▲ Supercompuéria Center **Regional Network** SDSC Network (San Diego Supercomputer Center) NorthWestNet (Boeing Computing Services) BARRNET (Stanford University)

:


NSFNET/INTERNET COST SHARING

(% OF TOTAL OF \$ 97 M IN FY 1988)




- STATE- DIR
- INDUSTRY
- UNIVERSITY
- CAMPUS NETS

CSNET Geographic Map, July 15, 1986

NETWORKS, NUMBER OF USERS, SPEEDS

A RESEARCH AND DEVELOPMENT STRATEGY FOR HIGH PERFORMANCE COMPUTING

continuit at

Executive Office of the President Office of Science and Technology Policy November 20, 1987

the distribution of LEASE in the Party of

NATIONAL RESEARCH NETWORK

Stage 1	Expand interagency collaboration; interconnect networks; upgrade to 1.5 mb/
Stage 2	Expand (interagency) network; 45 mb/s trunking; 1.5 mb/s to 200-300 institutions

institutions

1-3 gb/s trunking; 1.5-45 mb/s to 1000

Stage 3

CURRENT ACTIVITY: NETWORKING

NATIONAL RESEARCH INTERNET
ACCEPTED

NSF IS LEAD AGENCY

AGREEMENTS AMONG

NSF, DARPA, DOE, NASA

"FRICC" CREATED AND OPERATING

"PHASE 1 BEING ACCOMPLISHED FROM FY 1988 RESOURCES

ADVANCED "T-3" (45 MB) BACKBONE PLANNED AND STARTED VIA DARPA/DOE/NASA SUPPORT TO NSF

HIGH SPEED NET RESEARCH
BEGUN BY NSF/ARPA/INDUSTRY

NSB 3/18/88

MORE CURRENT ACTIVITY: NETWORKING

"GIGABIT" NET ADVISORY COMMITTEE
ESTABLISHED BY DARPA

"POLICY BASED ROUTING" ISSUE IDENTIFIED

UNIFORM NET SERVICES WORKING
GROUP ESTABLISHED BY NSF

ARPANET/NSFNET "RATIONALIZATION"
INITIATED

FY 89, 90 BUDGET COORDINATION

INTERNATIONAL POLICY DEVELOPING

TRANSITION TO COMMERCIAL NET
OPERATION ESTABLISHED AS GOAL

NSB 3/18/88

The National Science Foundation "Efforts in Science and Technology Education"

presented by

Dr. Bassam Shakhashiri Assistant Director for Science and Engineering Education

NATIONAL SCIENCE FOUNDATION

news

FOR RELEASE:

Elizabeth Tait

(202) 357-9498

Office: Home:

(703) 527-6938

February 29, 1988 NSF PR 88-11

INTERNATIONAL SURVEY GIVES U.S. A FAILING GRADE IN SCIENCE EDUCATION

Students at the 5th, 9th, and 12th grade levels in the U.S. perform poorly in science subjects compared to their counterparts around the world, according to the results of an international science achievement survey reported today by the National Science Foundation (NSF).

"For a technologically advanced country, it would appear that [in the United States] a reexamination of how science is presented and studied is required," concludes the preliminary report of the Second International Science Study, conducted by the International Association for the Evaluation of Educational Achievement (IEA), an association of research centers.

U.S. fifth grade students ranked 8th among 15 countries.

At the 9th grade level, U.S. students placed 15th in a field of 17 nations, with only Hong Kong reporting poorer performance.

Among high school seniors pursuing a second year of study in biology, those considered to be "advanced placement" students and science specialists, the U.S. placed last with an average mean score of 37.9 percent. Advanced chemistry students in the

-more-

U.S. placed 11th out of 13 countries. Second-year American physics students ranked 9th of 13 countries.

"These findings emphasize again the troubled state of science education in the United States. We need a continual flow of talented and well educated people in order to maintain and improve the strength of the U.S. scientific and technological workforce," commented NSF Director Erich Bloch. "The critical question is whether we will be able to provide the high quality science and engineering personnel essential to meet the challenge of both our own domestic needs and those of the international marketplace.

"America's future as a world technological and economic leader and the quality of life we enjoy depend on confronting the real problems in science education with vigor, determination and a sense of urgency."

During the period 1983 to 1986, international tests based on science curriculum studies in each participating nation were administered to some 204,308 students at 7581 schools in 24 countries. The report released today contains preliminary results for the 17 countries for which data is now available: Australia, Canada, England, Finland, Hong Kong, Hungary, Italy, Japan, Korea, the Netherlands, Norway, the Philippines, Poland, Singapore, Sweden, Thailand, and the United States.

Three academic levels were selected for testing within each educational system: near the end of primary school, around the age of 10 years, typically grades four or five; the point in secondary school when education in most systems is still full-time and compulsory, 14-year-olds, or grades 8 and 9; and the terminal year of secondary school, 12th grade. These are the same populations sampled in the first IEA science achievement survey of 19 countries in 1970.

Among 10-year-olds, students in Japan, Korea, and Finland were the top performers with mean scores of 15.4 and 15.3 out of a possible 24 correct answers to test items. Singapore, Hong Kong, and the Philippines are at the bottom of the scale, and the U.S. is in the middle with a mean score of 13.2.

At the intermediate level, Hungarian, Japanese, and Dutch 9th graders demonstrated the highest achievement, correctly answering 19.8 to 21.7 out of 30 questions. American 14-year-olds ranked third to the last with 16.5 items correct, ahead of Hong Kong and the Philippines. In Thailand, whose score equalled that of the U.S., only 32 percent of this age group is in school, as opposed to 100 percent in the United States.

The bottom 25 percent of the fourteen-year-olds performed particularly badly in England, Hong Kong, italy, Singapore, and the U.S. The lowest-scoring children were scoring at chance level, indicating that, from the test's point of view, they were scientifically illiterate, according to the report.

The United States did not administer a test to high school seniors not taking science in conjunction with this study, so only data on biology, chemistry, and physics specialists is available for international comparison. In general, Hong Kong, England, and Singapore, where advanced secondary students may be studying only mathematics and science, were the highest scoring nations at the 12th grade level. Canada, Italy, Finland, and the U.S. recorded the lowest marks overall.

"The data paint a dismal picture of science education in the United States today. But American children have just as much native curiosity and capacity for learning about science as children in any nation," said Bassam Z. Shakhashiri, NSF Assistant Director for Science and Engineering Education.

"We must develop quickly the national will to improve the effectiveness of science education in American schools. All segments of our society must work together to nurture our children's curiosity and to provide for them teachers, materials, and surroundings that help them to learn science. The NSF is supporting the development of new curriculum materials for students in grades K-12, and the training of elementary school teachers is a high priority also in our efforts to improve science education."

The survey measured also the differences in science achievement between the sexes. In grades five and nine, in all countries reporting, boys had higher scores than girls. In Grade 12, in biology, chemistry, and physics, boys performed better than girls except in biology in Australia, Hong Kong (Form 7 level), and Sweden. In the U.S., the higher the grade level, the greater the discrepancy between boys and girls. Female students who were taught science by female teachers did not perform better than those taught by male teachers.

The report of the the Second IEA Science Study released today is an interim presentation of some selected international achievement score results intended to provide initial information from cross-national comparisons. Three comprehensive reports will be published in 1989. The first will concern science education and curriculum in 24 countries. The second will present basic descriptive statistics and explanatory analyses of between and within country differences in science education achievement in the 24 countries. The

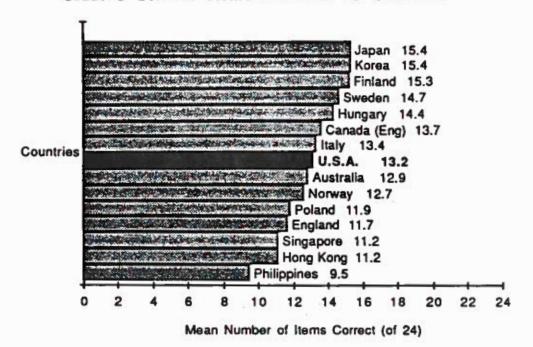
third will compare science education and achievement in the ten countries which participated in the IEA science studies in 1970 and 1983-1986.

Each participating school system collaborated in the research, and each was responsible for its own funding, data colection, data analysis, and preparation of national reports. Funding of approximately \$1.25 million was provided by NSF. Additional international support came from the Japanese Shipbuilding Industry Foundation, the Center for Statistics of the U.S. Department of Education Office of Educational Research and Improvement, the Bank of Sweden Tercentenary Fund, and the Swedish National Board of Education.

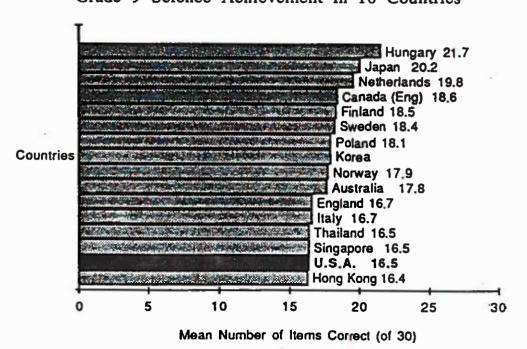
The Australian Council for Educational Research in Melbourne serves as the international coordinating center for the study. Subsequent data processing and analyses are being undertaken at the Institute of International Education at the University of Stockholm and at the Institute of Comparative Education of the University of Hamburg.

Single copies of the report are available from the Office of Studies and Program Assessment, National Science Foundation, 1800 G Street, N.W., Washington, D.C., 20550. Telephone (202) 357-7425.

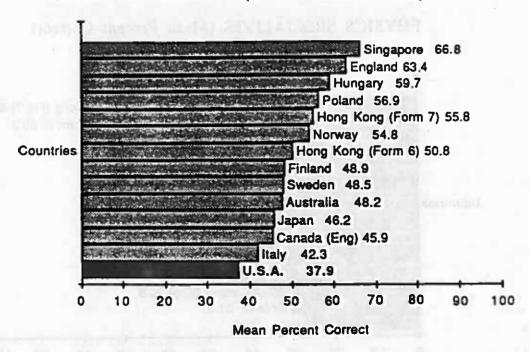
The U.S. coordinators are both at Teachers College, Columbia University: Richard N. Wolf, (212) 678-3355, and Willard Jacobson, (212) 678-3382.

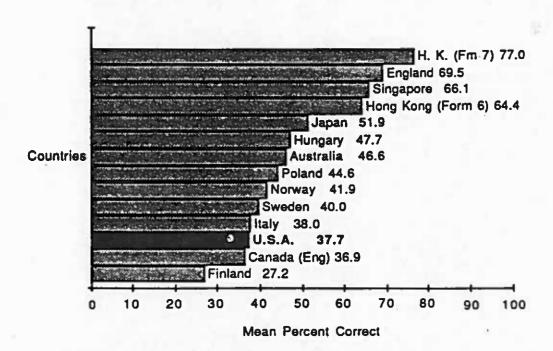

-end-

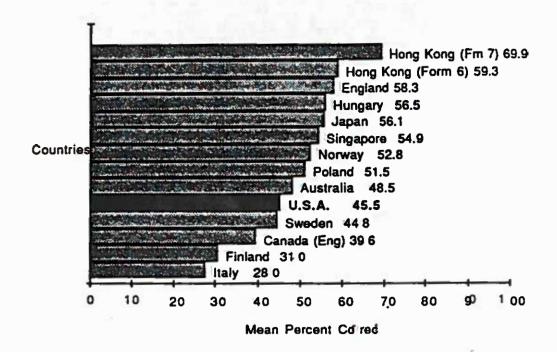
[Graphs and charts follow]


RANK ORDER OF NATIONS FOR EACH POPULATION LEVEL

=======================================		8/9			Phys.	Science Student
Australia	9	10	9	6	8	4
Canada (Eng)	6	4	11	12	11	8
England	12	11	2	2	2	2
Finland	3	5	7	13	12	-
Hong Kong	13	16	5	1	1	12
Hungary	5	1	3	5	3	1
Italy	7	11	12	10	13	7
Japan	1	2	10	4	4	3
Korea	1	7	_	-	_	- II
Netherlands	-	3	_	_	_	· -
Norway	10	9	6	8	6	3
Philippines	15	17	-	_	_	-
Poland	11	7	4	7	7	2 -
Singapore	13	14	1	3	5	6
Sweden	4	6	8	9	10	(m)
Thailand	_	14	_	-	_	-
U.S.A.	8	14	13	11	9	-
Total No.						
of Countries	15	17	13	13	13	8


Grade 5 Science Achievement in 15 Countries


Grade 9 Science Achievement in 16 Countries


BIOLOGY SPECIALISTS (Mean Percent Correct)

CHEMISTRY SPECIALISTS (Mean Percent Correct)

PHYSICS SPECIALISTS (Mean Percent Correct)

The National Science Foundation
"State Science and Technology Program Data"

presented by

Ms. Margaret Grucza, Study Director Government Studies Group Division of Science Resources Studies

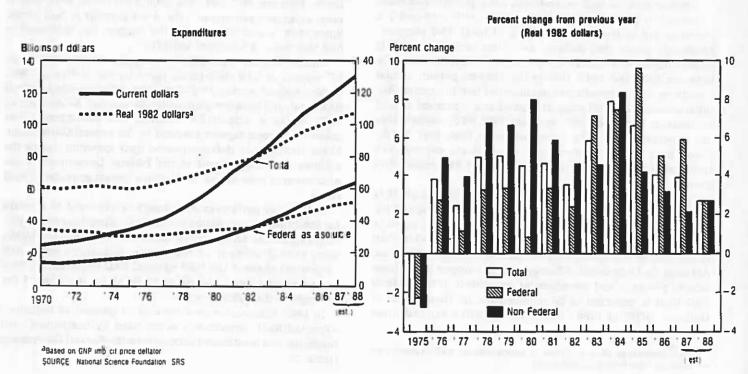
SCIENCE HIGHLIGHTS RESOURCES HIGHLIGHTS

NATIONAL SCIENCE FOUNDATION

WASHINGTON D.C. 20550

FEBRUARY 19, 1988

NSF 88 303


Real Increase in 1988 National R&D Funds Estimated at Lowest Rate in Eleven Years

Highlights

- The Nation is expected to spend \$132 billion on research and development in 1988, or 7 percent more than the amount estimated to have been spent in 1987. After adjusting for expected infation, this represents a 3-percent increase, the bwest rate of real research and development (R&D) growth since 1977.
- Between 1977 and 1982. national R&D expenditures increased 4.5 per cent annually in real-dollar terms. Between
- 1982 and 1985, real R&D growth increased to 6.8 percent annually, before slowing to 4 percent in both 1986 and 1987 (chart 1).
- It is expected that about 68 percent of the Nation's total R&D expenditures will be spent on development activities in 1988, a fraction that has increased gradually from a level of 64 percent in 1982. This shift toward development is primarily a result of major increases in Federal spending on defense R&D activities, which is about 90 percent development.
- The proportion of U.S. gross national product (GNP) spent on R&D activities is estimated at 2.7 percent for 1988; the ratio has remained relatively unchanged since 1985, Between 1978 and 1985, the U.S. R&D GNP ratio increased from 2.1 percent to 2.7 percent. The U.S ratio will continue to exceed or approximate that of other market-oriented, industrialized

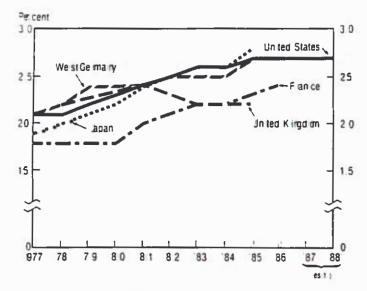

The estimated 1987-88 growth in real R&D expenditures is based on an assumed 4-percent change in the GNP implicit price deflator- as estimated by the Office of Management and Budget.

Chart 1. National R&D expenditures

nations (chart 2). If existan invade fenses R&D expenditures are compared to GNP. Low verified Stratic Assubstantially lower, and loss staxed at 1.8 percent throughout the 1983-88 period. As comparison, actor ding to the latest data available, the civilian R&D GNP ratio for lapanivas 2/8 percent in 1983 and 2/3 percent for West Grovery in 1986.

Chart 2. International R&D/GNP

NOTE Sta for the United Ki ingdomare ava liable only of 1978 981 985 and 985 SOURCES National Science Founda on 18 Sa to Organisation for Economic Concern on and Development

National R&D Expenditure Trends

Although national R&D expenditures are expected to increase 7 percent in 1988 to \$132 billion, this growth represents a continuation in the recent slowing of total R&D support. Measured in real 1982 dollars, the Nation increased its R&D expenditures at a steady 4.5-percent average annual rate between 1977 and 1982. During the 1982-85 period, annual growth in such expenditures accelerated to 6.8 percent. But inflation-adjusted R&D support slowed to a 4-percent rate of increase in 1986 and 1987, and real 1988 R&D expenditures are expected to be only 3 percent more than 1987 levels. Slackening in both Federal and non-Federal support has contributed to this 3-year slowing in national R&D-expenditure growth.

Since 1980, most of the gain in national R&D support is attributable to major increases in Federal defense spending. Approximately one-half of total U.S. R&D expenditures is provided by the Federal Government, and slightly more than 70 percent of this Federal R&D total is for defense activities. Although the Department of Energy provides support for defense-related research and development, two-thirds of the Federal R&D total is expected to be incurred by the Department of Defense (DOD) in 1988. Increases in DOD's expenditures

account for fully 90 percent of the estimated growth in Federal RSD support between 1980 and 1988.

DOD is expected to continue shifting its R&D £mph{sis} from research to development. In 1980, development accounted for 33 percent of DOD's R&D support; in 1989, for an estimated b'a percent, When the funds of other against are method, that proportion of total Federal R&D funds devoted to development be smalled at 72 percent for 1988. Basic research and appliant research each will receive an estimated 14 Percent shape of the Federal R&D delby in 1988. In 1980, the percentage shape of Federal R&D support were 16 percent for basic research. 23 percent for applied research, and 61 percent for development.

During most of the eighties industry has maintained it relative, support for development at about 7.2 percent of its total R&D outlay. Basic research is expected to receive about 5 percent of industry's total R&D support in 1988 and applied research is to receive 23 percent. These percentage shares largely are unchanged from 1980 levels. In terms of performance, however, the data indicate that industry is increasingly committed to development. The share of development in industry's total R&D performance declined from 79 percent in the early seventies to 75 percent in 1985. Since then, development's share has increased—to an expected 77 percent in 1988.

R& D Ex penditures by Source and Performer

Federal R&D support is estimated at \$65 billion for 1988 (a ble 1), which is 7 percent more than in 1987 (3 percent in real terms). Non-Federal support is expected to reach \$67 billion, which also is a 5 percent increase over 1987 (or 3 percent in real terms) (chart 1). Of the non-Federal total industry support is estimated at \$68 billion; university and college support at \$1.9 billion; and no nprofit support at \$1.5 billion (table 1). These represent real-term increases of 3 percent. 3 percent, and 2 percent, respectively, from 1987 R&D support levels. Between 1977 and 1984, total non-Federal R&D support grew at an average annual rate of 6.4 percent in real terms. Since then, real-dollar non-Federal support has increased at half that rate —3.0 percent annually.

Industry and the Federal Government are expected to provide 97 percent of total R&D funds spent by the Nation in 1988. Federal support accounts for 49 percent of the expected national R&D total, and industry support for 48 percent. As recently as 1986, industry support for research and development was greater than such support provided by the Federal Government. Major increases in defense-related R&D spending during the eighties contributed most to the Federal Government's displacement of industry as the Nation's largest provider of R&D funds.

In terms of performance, industry is expected to account for \$96 billion of the Nation's total R&D expenditures in 1988. This represents an 8-percent increase over 1987, or slightly more than 3 percent in real terms. Industry's estimated 73-percent share of the 1988 national R&D performance to tall is unchanged from the percentage share accounted for throughout the 1982-87 period.

In 1988, funding for an estimated 70 per cent of in dustry's expected R&D performance is provided by companies own funds, the rest is estimated to come from the Federa Government (table 2).

^{&#}x27;These percentage share estimates of defense-related R&D expenditures are based on 1986 Federal budget totals.

Table 1. Funds for research and development [Dollars in millions]

		Federal		Academo	sec b r	Other
Year	Total	Govern- ment	Industry'	Universities and colleges	Assoc lated F FRD Gs ²	Institu-
			Ву	performer		
1977	42,783	6.012	29.825	4.067	1.3.84	1,495
1978	48,129	6.811	33,304	4.625	1 ,717	1.672
1979	54,933	7,417	38.226	5.361	1 .935	1,994
1980	62,593	7,632	44,505	6.060	2 2 46	2.150
1981	71.840	8.425	51,810	6,819	2.486	2.300
1982	79.316	9,141	57,995	7,276	2.479	2.425
1983	87,204	10.582	63,403	7.807	2, 737	2.675
1984	97,638	11.572	71.470	8,503	3 118	2,975
1985	107,436	12,945	78.208	9,504	3,529	3 250
1986	114,697	13,535	83,562	10,600	3,600	3,400
1987 (est.)	123,050	15,450	89,200	11,150	3 ,800	3 450
1988 (est.)	131,600	16,400	95.950	11,725	4.000	3 525
			В	source		
1977	42,783	21,594	19,629	888		672
1978	48,129	23.876	22,450	1.037		766
1979	54,933	26,815	26,082	1,198		838
1980	62,593	29,453	30.913	1,318		909
1981	71 840	33,405	35.944	1.520		971
1982	79.316	36.505	40.096	1.690		1,025
1983	87,204	40,671	43,515	1.881		1,137
1984	97,638	45.340	49 066	2.024		1 208
1985	107,436	51,275	52,597	2 259		1 ,304
1985	114,697	55,273	55 549	2 500	-	1,375
1987 (est.)	123 ,050	60.350	58,570	2,700		1.430
1988 (est.)	131 600	64,550	62 525	2 900		1 525

The udes expenditures for federally funded, esearch and development, lighters, IFFR DCs) administered by this sector. They account for less than 5 percent and 25 percent, respectively, of the industry and nonprofit performance totals.

*FFRDCs administered by individual universities and colleges and by university consortial Source National Science Foundation, SRS

Table 2. Estimated funding for research and development by source of funds: 1988 [Dollars in millions]

		16.01	Perto	ormers	
Source of funds	Total	Federal Government	Industry'	Universities and colleges ²	Other nonprofit institutions
Total	\$131,600	\$16,400	\$95.950	\$15 725	\$3.525
Federal					
Government .	64,550	16,400	34.500	11 250	2,400
Industry Universities and	62,625		61.450	750	425
colleges Other nonprofit	2,900	- -		2 900	
institutions	1,525			825	700

includes expenditures for federally funded research and development center is EFADCs, administered by this sector

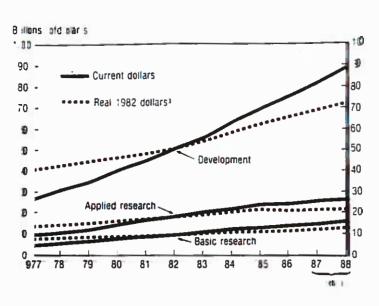
fincludes expenditures for FFRDCs administered by individual universities and in eges and by university consortia

SOURCE National Science Foundation, SRS

The Federal Government histoically is the Nation's economic for the Nation's R&D performer, and is expected to account Priliper Ant —\$16billion —of the nation! R&D effortin 1988. This is a operant in rease (2 per ent in real terms) in Pederal intramural R&D performance. Monto fithe remaining restarch and I development is performed Pith. Nation's universities and objects—induding verk done in federally for dedictionand objects. In fill 8, the total mated R&D performance, by the accademic sector is \$16 billion, or stightly less then 1 percent of the Nation's total. The repestents a 5-percent increase over 1987, or 1 percent in real terms.

Basic Research, Applied Research, and Development

The United States is expected to spend \$15 billion on basic research in 1988. \$27 billion on applied research, and \$90 billion on development (chart 3). After adjusting for stimated inflation, basic research spending is expected to be down slightly from 1987 expenditures, applied research spending to be level, and development spending to be up 4 percent.


The 1988 estimates by type of R&D work represent a continuation in recent national funding patterns. For the past several years, growth in support for the research Components has been slower than for development. Between 1982 and 1987, basic research funding is estimated to have increased at an inflation-adjusted 5-percent average annual rate, applied research funding, at 4 percent annually, and development funding, at more than 6 percent annually. Differences in these rates of growth have increased development's share of total R&D expenditures from 64 percent in 1982 to an expected 68 percent in 1988. This shift toward development is primarily a result of the increases in Federal support for defense research and development, which is about 90 percent development.

The Federal Government continues to support two-thirds of the Nation's basic research with more than half of such support going to universities and colleges. Industry provides an additional 20 percent of the Nation's basic research support. In terms of performance, basic research spending by Federal intramural labs is expected to decline 6 percent in 1988 after adjusting for expected inflation. Basic research performance by industrial and academic labs is expected to remain unchanged from 1987 real performance levels.

Support for applied research comes primarily from industry (52 percent of the national total in 1988) and the Federal Government (42 percent). While industry's applied research support is expected to increase by 3 percent in 1988 after adjusting for inflation. Federal real-term support is expected to decline by 3 percent. In terms of applied research performance, industry spending is expected to be up 2 percent in real terms, and will account for more than two-thirds of such performance nationwide. Applied research performance by the Federal Government is expected to be down 4 percent in real terms in 1988.

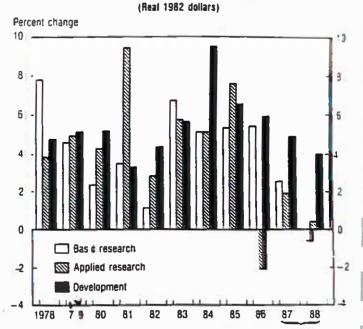

Support for development by both industry and the Federal Government is expected to increase in 1988; up 3 percent and 5 percent, respectively, in real terms. Most of the growth in Federal development support reflects a continuation in the shift toward increased emphasis on defense-related R&D

Chart 3. National basic research, app lied research, and development expenditures

aBased on GNP imp HCt price deliator SOURCE National Science Foundation RS

programs that has taken place in the eighties. Such programs generally have a much higher development component than do federally supported nondefense programs. In terms of performance, industry accounts for more than 80 percent of the Nation's development work. Industry's development performance is expected to increase by 4 percent in real terms in 1988.

Percent change from previous year

The National Science Foundation (NSF) has Telephonic Device for the Deaf (TDD) capabilities which enable persons with hearing impairment to communicate with the Division of Personnel and Management for information relating to NSF programs, employment, or general information. This number is (202) 357-7492.

رو

WASHINGTON D.C. 20550

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE \$300

RETURN THIS COVER SHEET TO ROOM 233 IF YOU DO NOT WISH TO RECEIVE THIS MATERIAL - OR IF CHANGE OF ADDRESS IS NEEDED INDICATE CHANGE INCLUDING ZIP CODE ON THE LABEL OD NOT REMOVE LABEL!

POSTAGE AND FEES PANATIONAL SCIENCE FOUNDATION

NSF 88 303

ld, lalladdhallallandadhlaadd

NATIONAL SCIENCE FOUNDATION WASHINGTON DC 20550

DIVISION OF SCIENCE RESOURCES STUDIES SURVEYS

- Federal Funds for Research and Development 1.
- Federal Support to Universities, Colleges, and Nonprofit Institutions
 - Survey of Academic Research Facilities, 1987-88 3.
- 4. Survey of Scientific and Engineering R&D Expenditures at Universities and Colleges
 - 5. Survey of Academic Research Instrumentation and Instrumentation Needs, 1985-86
- Survey of Industrial Research and Development
 - 7. Industrial R&D Funding Estimates by Individual Industry
 - 8 . Occupational Employment Survey of Scientists, Engineers and Technicians in Industry
 - Survey of Demand for Scientists, Engineers, and 9. Technicians in Industry
- 10. Survey of Natural and Social Scientists and Engineers
 - 11. Survey of Recent Science and Engineering Graduates
- 12. Survey of Doctorate Recipients
 - 13. Immigrant Scientists and Engineers
- 14. Graduate Science/Engineering Students and Postdoctorates
- Survey of Earned Doctorates (Doctorate Record File) 15.
- 16. Federal Scientists and Engineers
- (*) Surveys with geographic data

Contact: Margaret R. Grucza Director, Government Studies Group

National Science Foundation 1800 G Street, N. W.-L-602 Washington, D. C. 20550

202/634-4636 Phone:

(THOUSAND S O F DOLLARS)

	11		
GEOGRAPHIC DIVISION AND STATE	RESEARCH. DEV BLOPMENT	RESEARCH AND DEVELOPMENT	RAD PLANT
	AND RED PLANT		
TOTAL	51,792,736	50,310,213	1,482,523
NEH ENGLAND	4,446,915	4+422+120	24,795
CONNECTICUT		577,288	1,215
MAINE	35,643 3,257,372	35,610 3,239,665	33 17,707
NEW HAMPSHIRE	136,183	135-883	300
RHODE ISLANDVERMONT	. 398,133	392,593 41,081	5,540
MIDDLE ATLANTIC	6,407,162	6,245,687	161,475
NEW JERSEY	. 1.818.813	1,781,208	37,605
NEH YORK	3,268,267	3, 163, 260	105,007
PENNSYLVÁNIA	. 1,320,082	1, 301, 219	18,863
EAST NORTH CENTRAL	3,393,643	3,273,493	120,150
ILLINOISINDIANA		744,619 294,988	96,583
MICHIGAN		460,344	534 1,079
OHIO	1,611,405	1,592,140	19,265
MISCONSIN		181,402	2,689
MEST NORTH CENTRAL	1,678,884	1 612,662	66,222
IONA		224,049	3,262
MINNESOTA		112,643	41,043
MISSOURI		515- 342 677,780	1,078 4,660
MEBRASKA	48,443	41,120	7,323
NORTH DAKOTA		27,170 14,558	8,807
SOUTH ATLANTIC	. 12,324,499	12 084,895	239 604
DELAHARE		30,216	382
DISTRICT OF COLUMBIA		2, 324, 183	28,001
FLORIDAGEORGIA	. 1,501,968 . 266,081	1,448,712 250,495	53,256 15,586
MARYLAND.		4,512,294	78,648
NORTH CAROLINA	499,881	497,641	2,240
SOUTH CAROLINAVIRGINIA		122,492	5,662 45,607
MEST VIRGINIA		88,690	10,222
EAST SOUTH CENTRAL	. 2 068,313	1,982,479	85,834
ALABAHA		1,188,466	41,245
MISSISSIPPI		59,367 143,446	333 13,491
TENNESSEE		591,200	30,765
HEST SOUTH CENTRAL	. 2,203,268	2,118,306	84,962
ARKANSAS	41 353	40,493	860
OKLAHOHA	76,013	92,370 73,706	2,182 2,307
TEXAS	1 ,991 350	1,911,737	79,613
HOUNTAIN	. 5 897,111	5,578,530	318,581
ARIZONA	. 399,722	397,997	1,725
COLORADO	1,652,677	1,636,344	16,333
MONTANA.		266,596 26,360	24,747 224
NEVADA	532,507	462,623	69,884
NEW MEXICO	2,691,624	2,499,657	191,967
HYOMING		274,483 14,470	13,631
PACIFIC	100.000	12,896,039	362,569
ALASKA		. 49,225	-
CALIFORNIA	. 11,833,916	11,510,344	323,572
OREGON		55,190	11 986
MASHINGTON.		127,543 1,153,737	11,986 26,449
OUTLYING AREAS	. 50,657	36,792	13,865
OFFICES ABROAD	. 63,676	59,210	4,466

NOTE: THE OBLIGATIONS OF THE 10 MAJOR RAD SUPPORTING AGENCIES INCLUDED IN THIS TABLE REPRESENT MORE THAN 98 PERCENT OF TOTAL FEDERAL RAD AND RAD PLANT OBLIGATIONS IN FISCAL YEAR 1986.

عطوا يدة سيد وناسر فالدوية وعدونها

SOURCE: NATIONAL SCIENCE FOUNDATION, SRS

STATE (IN ORDER OF TOTAL	TOTAL	FEDERAL		FFRDCS		FFRDCS	OTHER NON-	FFRDCS	
	TOTAL	INTRAMURAL	INDUSTRIAL	ADMIN BY	UNIVER- SITIES AND	ADMIN BY	PROFIT INSTITU-	ADMIN BY	STATE AND
EDERAL RED OBLIGATIONS)		1/	FIRMS	INDUSTRIAL FIRMS	COLLEGES	COLLEGES	TIONS	NOMPROFIT INSTITU- IIONS	LOCAL GOVTS
TOTAL	50,310,213	13, 144, 647	24,448,100	1,640,236	6,444,758	2,414,347	1,551,052	543,250	123,82
ALIFORNIA	11,510,344	1,480,495	7,295,930	22,615	1,223,785	1,082,244	213,631	176,457	15,18
MARYLAND	4,512,294	3,095,850	1,039,737	31,270	279,061	83	61,953	2,607	1,73
MASSACHUSETTS	3,239,665 3,163,260	205,383 51,545	1,813,111	203,184	464,384 706,461	121,144 153,256	467,448 136,969	163,654	
/IRGINIA				203,184	105,971	133,236	66,165	81,917	44,944 4,82
NEN MEXICO	2,499,657	962,129	343,627	565,525	73,708	542,423	11,796	-	449
DISTRICT OF COLUMBIA	2,324,183				53,600	-	91,024	-	54
TEXAS	1,911,737	261,456		-	311,821		23,359		2,36
IEN JERSEY	1,781,208	942,624 100,232			78,407 117,011	86,593 37,203	6,597 22,400	2,877 58,340	
жіо	1,592,140	563,145	819,825		167,098	_	40.688	_	1,38
FLORIDA	1.448.712	413,102			127,158		5,364		2.71
PENNSYLVANIA	1,301,219	290,207	327,915	252,260	350,901	10,749	67,796	-	1,39
LABAHA	1,188,466				78,308		16,364		95
MASHINGTON	1,153,737	131,493	690,891	81,718	157,348		31,774	57,291	3,22
ILLINOIS	744,619	61,910	104,852	- In-	250,442	248,832	76,043		2,54
ISSOURI	677,780	51,316			109,957		13,483		
TENNESSEE	591,200	99,330		237,051	85,191	11,328	12,981	_	1 -,
INNESOTA	577,288 515,342	75,394 29,073			146,905 98,458		6,665 35,775		1,61 1,93
ORTH CAROLINA	497,641	131.280	156,929		191,392		16,315		1.72
IEVADA!	462,623	93,374			14,101	- 11	129		77
ICHIGAN	460,344	82,032	177,286	- III	177.951		22,033		1,04
RIZONARHODE ISLAND	397.997 392,593	93,371 258,919			70,910 45,709	22,962	3,535 12,002	107	2,29
INDIANA	294,988	53,236	139,449		96,663		4,599	_	
JTAH	274,483	70,578	102.198		78,472		22,151	-	1.08
DAHO	266,596	16,073	7,324	176,506	5,500	60,788	75		33
EORGIA	250,495 224,049	87,076 19,326			97,732 66,417	14,583	4,228 172		1,47 95
Market Company of the	THE ALL ST	Wy (***				24,500			
(ISCONSIN	181,402 143,446	24,927 97,088	12,762 14,226		140,701 29.852	To December	2,245 1,564	- 575	76 71
EN HAMPSHIRE	135.883	27,933		20 100	31.804		1,481		
REGON!	127,543	32,144		10.4	67,433		13.851	_	2.96
OUTH CAROLINA	122,492	13,016		70,107	34,678		1,800	-	
ANSAS	112,643	8,371		- m	38,626		751	- 3	46
OUISIANA	92,370 88.690			-	44,764	16,439	1,357	11111111111	
XLAHOMA	73.706	48,354 28,598			9,662 27,427	10,437	7,119		
CENTUCKY	59,367	27,182	2,031	-	28,914	-	95		
IANATI	55,190	18,499		_	29,820		4,912	- 3	42
LASKA	49,225			_	13,132		67	E - 1 To	1,59
EBRASKA	41,120	18,614			17,626		1,249	- 13-	43
ERMONT	41,081 40,493	7,089 24,264	6,970 875		22,467 12,120		4,186 2,248		36 98
WINE	35,610		14 150	_	6,994	_	10,735		1,15
DELAHARE	30,216	2,464	12,327	- T	13,152		2,074		19
ORTH DAKOTA	27,170	16,979	225	-	9,021		249		69
MITANA	26,360	16,235	706	-	6,737		304	-	37
OUTH DAKOTA	14,558 14,470	7,172 8,291	2,199	_	4,810 5,983	<u> </u>	160		21 19
OUTLYING AREAS	36,792	10,400	1,000	_	15,460	5,720	_		1,08
			45,326		753		645		1 2,50

^{1/} FEDERAL INTRAMURAL ACTIVITIES COVER COSTS ASSOCIATED MITH THE ADMINISTRATION OF INTRAMURAL AND EXTRAMURAL PROGRAMS BY FEDERAL PERSONNEL AS HELL AS ACTUAL INTRAMURAL PERFORMANCE. SEE TECHNICAL NOTES FOR FURTHER DESCRIPTION.

NOTE: THE OBLIGATIONS OF THE 10 MAJOR RAD SUPPORTING AGENCIES INCLUDED IN THIS TABLE REPRESENT MORE THAN 98 PERCENT OF TOTAL FEDERAL RAD OBLIGATIONS IN FISCAL YEAR 1986.

SOURCE: MATIONAL SCIENCE FOUNDATION, SRS

TABLE C-135. FEDERAL OBLIGATIONSFOR RESEARCH AND DEVELOPMEN, BY STATE AND AGENCY: FISCAL YEAR 1986

(THOUSANDS OF DOLLARS)

								1222			
STATE (IN ORDER OF TOTAL FEDERAL RAD OBLIGATIONS)	TOTAL	DEPT OF AGRI- CULT URE	DEPT OF COMMERCE	DEPT OF DEFENSE	DEPT OF ENERGY	DEPT OF HEALTH & HUMAN SERVICES	DEPT OF THE INTERI- OR	TRANS-	ENVIRON- MENTAL PROTEC- TION AGENCY	AERO- NAUTICS & SPACE	SCI ENCE FOUNDA- TION
TOTAL	50,310 -2 5	920, 328	398, 207	32,841,027	4,682,923	5,632,178	384, 326	385,431		3,396,650	1,351,824
CALIFORNIA	11,510, 344 4,512,394 3,239,665 3,163, 260 2,810,172	81,285 14,683 21,680	24, 725 125, 0 95 13,006 2, 495 5,185	2,508,380 2,451,879 2,004,384	1,014,552 41,032 61,877 373,553 36,093	656,505 1,262,286 471,083 579,421 75,751	15,146 3,100 6,186	67.571 40.642 9, 026	25,692 6,305 22,495 9,016 25,299	896,667 374,437 53,941 29,130 253,399	192,533 30,757 106,959 128,369 18,784
NEW MEXICO	2.499.657 2.324.183 1.911.737 1.781.208 1,636.344	104 - 291 39 , 828 3 , 477	50 8,502 1,696 18,824 58,004	1,629,079 1,308,259 1,396,016	1,011,497 82,046 19,344 99,521 71,672	16, 899 108,664 209,634 45,835 65,675	6,586 25,017 3,708 3,224 31,890	46,997	629 20,584 15,738 1,692 4,472	14, 477 138, 637 271, 944 106, 700 68, 837	9,792 166,431 37,079 58,922 57,654
OMIO	1,592,140 1,448,7 l2 1,301,219 1,188,446 1,153,737	26.461 33.938 10,549	610 21,883 846 2,716 39, 487	1,129,932 943,011 582,217 831,155 716,886	42,904 15,955 279,262 8,695 176,136	125,380 61,265 259,249 60,217 129,850	2,957 2,762 29,741 5,757 14,734	5,621 4,160 3,981 493 564	41,419 5,038 3,482 1,117 2,027	346,701 52,684 264,692	22, 028 21, 476 55, 799 3,075 27,408
ILLINOIS	744,619 677,780 591,200 577,285 515,342	13.033 7.744 3.728	1,273 479 825 4,015 2,369	197,983 537,725 220,581 343,399 346,463	268,978 3,091 254,356 14,363 4,717	153,669 97,687 73,483 121,547 105,772	1,344		3,295 287 12,622 3,795 7,601	7, 354 10, 380 62,921	67, 031 8, 470 7, 885 12,829 12,7 06
NORTH CAROLINA NEVADA	497,641 462,623 460,344 397,997 392,593	1.939 13.143 14,064	4, 228 1, 071 4, 498 438 2, 808	180, 854 110, 140 245, 844 283, 987 340, 651	5,009 329,033 21,981 1,047 2,704	200,150 2,483 111,183 34,552 22,825	4,863 4,856	964	56.117 6.052 1.974 1.223 4,629	1, 209 15,1 32 18, 308	1 8.419 1.751 38.719 38.558 14.677
INDIANA	294, 988 274,483 266,596 250,495 224,049	8.957 10.676 35,322	222 50 70 1, 089 202	61.874	7, 517 243,711	44, 429 40,544 915 85,538 43,509	10,662 8,091	344	905 1, 374 356 6, 414 1,117	22, 945 213 38, 280	30,672 11,912 499 12,922 6,742
MISCONSIN MISSISSIPPL	181,402 143 446 135,883 127,543 122,492	31,204 3,253 21,28	2,672 8,960 886 7,859 2,419	5,490 63,953 98,135 11,135 9,957	3,808 853	83,967 8,587 16,714 42,845 17,768	4,026 1,425 12,278	505 344 197	1,675 445 267 6,678 583	20,613 5,519 3,515	
KANSAS LOUISIANA HEST VIRGINIA OKLAHOMA KENTUCKY	88.690	26,497 10,836 12,147	3,425 323 3 041	4,797 16,957	1,518 40,195 4,297	16,195 34,228 9,743 13,626 27,509	4,284	647 325 4 982	516 1 .016 554 7, 729 1 .130	1,788 238 5,089	17, 230 3 364
HAMAII	55 190 49,225 41,120 41,081 40,493	5,036 14,570 3,293	7, 152 180 40	10 107 3,538 10,322	1,379 567 5,200	9,905 17,939	16.306 7,958 1,126	17 0 122	63 30 122 255 412	2 247 409 1 429	3 70 1 ,355
MAINE	35,610 30,216 27,179 26,360 14,558 14,470	2,743 17,286 9,076 4,338	1,564 596	14,203 12,175 172 677 584 332	982 446 1, 215 99	9,755 2,693 874 7,838 803 826	3,693 3,698 7,280	3,676 235 129	77	943 128 483	7,930 389 1,907 765
OUTLYING AREAS	34 792	21	3,232	- 4	1	7,116	!	1		l .	
OFFICES ABROAD	59,210	649	69	58,344	-	-	166	-	<u> </u>	-	<u> </u>

NOTE: THE OBLIGATIONS OF THE 10 MAJOR RAD SUPPORTING AGENCIES INCLUDED IN THIS TABLE REPRESENT MORE THAN 9 8 PERCENT OF TOTAL FEDERAL RAD OBLIGATIONS IN FISCAL YEAR 1986.

SOURCE: NATIONAL SCIENCE FOUNDATION, SRS

	Ī	i	i——	FFROCS	EA	RAMURAL	1	FFROCS	
GEOGRAPHIC DIVISION, STATE, AND AGENCY	TOTAL	FEDERAL INTRAMURAL 1/	INDUSTRIAL FIRMS	ADMIN 6Y	UNIVER- SITIES AND COLLEGES	FFRDCS ADMIN BY UNIVS AND COLLEGES	OTHER HONPROFIT INSTITU- TIONS	ADMIN BY	LOCAL
TOTAL TOTAL	50,310,213	1 13,144,647	24,448,100	1,640,236	6,444,758	2,414,347	1,551,052	543,250	123,82
DEPARTMENT OF AGRICULTURE DEPARTMENT OF COMMERCE DEPARTMENT OF DEFENSE DEPARTMENT OF ENERGY DEPARTMENT OF HEALTH & HUMAN SRYCS DEPARTMENT OF THE INTERIOR DEPARTMENT OF TRANSPORTATION ENVIRONMENTAL PROTECTION AGENCY NATIONAL AERONAUTICS AND SPACE ADMIN NATIONAL SCIENCE FOUNDATION	4,682,923 5,632,178 384,326 385,431 317,319 3,396,650	205,850 1,235,503 332,038 131,321 97,605 1,217,343	21,502,381 738,219 186,551 9,739 188,412 124,569	145,536 1,455,133 33,416 3,850 196	274.500	1,768 285.017 1,797.344 26,280 7,695 102 214,548	4,485 494,049 39,130 790,844 332 20,926 18,173 101,127	435,700 101,953 5,008	71.14 1.92 24.36 7.25
NEW ENGLAND TOTAL	4,422,120	577,067	2,329,138		718,263	121,144	502,517	163,654	10,33
DEPARTMENT OF AGRICULTURE DEPARTMENT OF COMMERCE DEPARTMENT OF DEFENSE DEPARTMENT OF HEALTH & MUMAN SRVCS DEPARTMENT OF HEALTH & MUMAN SRVCS DEPARTMENT OF THE INTERIOR DEPARTMENT OF TRANSPORTATION ENVIRONMENTAL PROTECTION AGENCY NATIONAL AERONAUTICS AND SPACE ADMIN NATIONAL SCIENCE FOUNDATION	22.255 3.258.589 85.122 659.863 9.011 50.946 32.346	10,938 494,320 1,964 6,440 38,104 2,313 6,024	1,593 2,167,668 13,607 38,054 293 6,910 15,693		11,848 7,259 87,552 66,808 380,385, 2,037 738 7,450 23,885 130,301	117,398 3,555	4,707 234,750 219 259 4,800	163,654	78 1.28 1.28 4.71 2.09
CONNECTICUT TOTAL	577,288	75,394	346,714	_	146,905	φ -	6,665	-	1,61
DEPARTMENT OF AGRICULTURE DEPARTMENT OF COMMERCE DEPARTMENT OF DEFENSE DEPARTMENT OF ENERGY DEPARTMENT OF HEALTH & HUMAN SRYCS DEPARTMENT OF THE INTERIOR DEPARTMENT OF TRANSPORTATION ENVIRONMENTAL PROTECTION AGENCY NATIONAL AEROMAUTICS AND SPACE ADMIN NATIONAL SCIENCE FOUNDATION	4,015 343,399 14,363 121,547 1,344 9,347 3,795 62,921	2,262 63,415 66 1,220 6,779	272,219 6,552 1,374 2,186 2,590		1,317 1,753 7,291 7,806 115,218 124 317 1,031 12,048		474 5 4,516 792 728 150		75 1 37 1 38 1
MAINE TOTAL	35,610	2,349	14,375	-	6,994) -	10,735	-	1,1
DEPARTMENT OF AGRICULTURE DEPARTMENT OF COMMERCE DEPARTMENT OF DEFENSE DEPARTMENT OF ENERGY DEPARTMENT OF HEALTH & HUMAN SRYCS DEPARTMENT OF THE INTERIOR DEPARTMENT OF TRANSPORTATION ENVIRONMENTAL PROTECTION AGENCY NATIONAL AERONAUTICS AND SPACE ADMIN NATIONAL SCIENCE FOUNDATION	1,500 14,203 125 9,755 1,187 275 905 486	864	14,046 14,046		2,056 635 113 564 308 731 89 2,498		125 8,681 174 260 1,428		38
MASSACHUSETTS TOTAL	3,239,665	205,383	1,813,111		464,384	121,144	467,448	163,654	4,5
DEPARTMENT OF AGRICULTURE	2,451.879 61.877 471.083 3,100 40,642 22,495	7,385 146,353 1,898 1,448 31,133	1,583 1,731,914 7,055 34,609 291 4,563 13,103	-	54,263 221,080 1,142 738 5,018	3,555	210,292 211 256 3,767	163,654	·

NOTE: Data on individual universities and colleges is available from the Survey of Federal Support to Universities Colleges and non-profit Institutions.

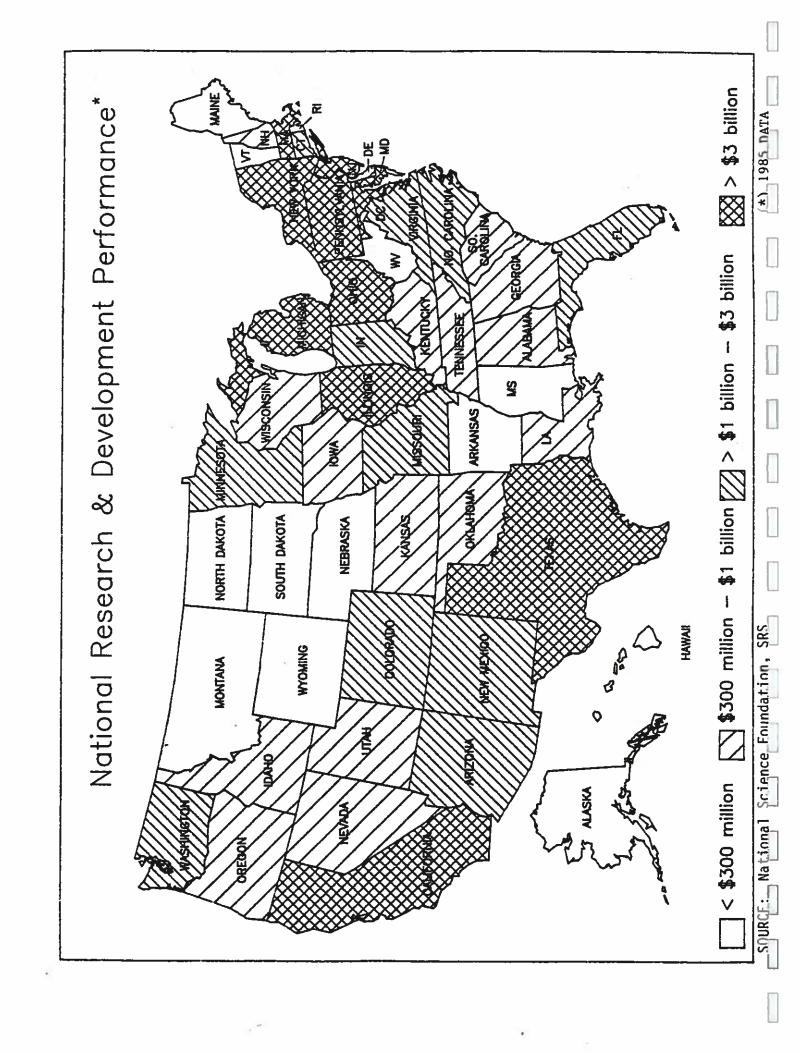


Table B-1. State agency expenditures for research and development by State, character of work, and R&D plant: FY 1977

7						Total R & D		We seem h and development							R & D plant
	State					R & D plant	Total	1	8 45	2	Appla	led	Develo s	ment	K & D plant
TOTAL		٠				370 192	358	473	51	941	20 2	391	74	142	11 717
ALABAMA						1 339	1	2 27		_		963		263	132
ALASKA						7 855		655				358		297	200
ARIZONA		٠		٠		1 741	1	684		180	1			272	57
ARKANSAS.			٠	•		544		50.3		690		40 9		153	41
CALIFORNIA		٠	•	٠	• •	37 832	37	496	3	940	19	653	15	122	336
COLORADO.						9 648		620		25		367	1	229	28
CONNECTICUT		٠				5 195	4	874	1	923	2			735	321
DELAWARE.		•	•	٠		696		611				290		321	84
FLORIDA GEORGIA		•	٠	•	• •	14 730 3 201		199		869		891 123		714 991	1 256
GEORGIA		•	٠	•	• •	2 201	,	177		00		123	1	774	2
HAWAII		•				3 370		873		3	1	599	1	271	497
IDAHO			•	٠	• •	1 690		690		801		849		41	
ILLINOIS		٠	٠	•	• •	18 380 4 P 1		908		739		976	3	112	472 12
IOWA		•	•	•	• •	2 160		0 97		478		215		404	63
		٠	•	•		- 10				-10					
KANSAS		٠		•		4 137		107		145		351		610	30
KENTUCKY.		•	٠	٠		11		610		458		0.46		166	1 511
LOUISIANA . Maine		•	•	•	• •	7 287		344		198	1	177	,	461	761
MAINE MARYLAND				:	: :	9 0 93		996	1	0 74	7			212	97
						1						4.05			
MASSACHUSET MICHIGAN		•	•	•	• •	3 550 8 574		286		856	1	698 307		733	264 221
MINNESOTA .		٠	•	•	: :			199		220		721		258	48
H1551551PP		:		÷	: :	1 627		627 1	•	785		812		31	
MISSOURI			٠			2 169	2	053		35	1	912		D 6	115
MONTANA						2 867	,	861		36	,	569		256	6
NEBRASKA.		:		i.	: :	675		641		4	-	594		43	34
NEVADA		٠				1 116		084		-		197		887	32
NEW HAMPSHI		•	٠			1 2 92		2 10		-		445		765	A2
NEW JERSEY.		•	٠	٠	• •	A 740	А	497	1	191	2	395	4	911	243
NEW MEXICO.		٠						012		523		944		545	489
NEW YORK			٠			102 258		695		316		113		266	1 563
NORTH CAROL			•	•		11 703		583	1	33A		619	6	627	12
NORTH DAKES			:	•		1 931 7 239		832		763		19	,	435 736	l ii
		•	•	•	• •			***		141	100				
OKLAHOHA						1 550		453		91		911		451	97
OREGON				٠				070		161		293		416	90
RHODE ISLAN	A	•	•	•	• •	9 268	9	752	2	106	3	165	1	993	101
SOUTH CAROL		•	*			5 681	44	974		822	3	314		939	707
		•													
SOUTH DAKOT		•	٠	٠		1		262		180	1	785		176	6
TENNESSEE .		•	•	٠	• •	1 175 12 113		168		208 960		590	,	246	277
UTAH		:		:	: :	2 332		918		113		742		42	415
VERMONT						188	1116	188		6		183		-	510.00
VIRGINIA						5 501		155		166	,	785	,	203	346
VIRGINIA WASHINGT∩N.		•	:	:	: :	10 100		062		100		343	1 1		121
WEST VIRGIN			-		: :	1 114		859		-00		409		449	251
WISCONSIN .						5 030	4	993		389	3	400	1	203	38
WYOMING				٠		74A		716		61		507	,	47	32

NOTE: Because of rounding, detail may not add to totals.

SOURCE: National Science Foundation

⁻ Represents zero.

Table B-2. State agency expenditures for research and development by State and functional area: FY 1977

State	fotal	Health	Natural resources	Education	Transpor- tation	Incume security and social services	Environ- ment	Crime preven- tion and control	Economic growth and pruduc- tivity	Area and community develop- ment, housing, and public services	Science and techno- logy base	Energy	Food, fiber and rager tur proc
TOTAL	358 473	100 865	61 150	28 169	29 030	24 067	28 027	13 092	6 099	12 789	50	31 450	23 6
ALABAMA	1 227 7 655 1 684 503 37 496	190 - 27 3 797	336 1 135 377 105 3 578	269 937 180 4 404	91 138 489 215 4 947	241 99 1 869	14 129 4 535	177 - 9 1 582	50 158 47 450	682 110 1 196		7 880	3:
COLORADO	9 620 4 874 611 13 474 3 199	12 928 40 2 036 350	2 684 861 461 1 633 349	199 52 2 167 1 572	143 243 1 247 666	5 693 281 1 710	70 261	37 883 14 200 62	50 - 598	803 75 96 37	:	526	3 .
HAWAII	2 873 1 690 17 908 4 089 2 097	1 685 1 700	713 975 3 623 1 033 1 161	2 549 387 224	34 1 00 1 664 400	390 73	32 5 5 768 -	128 577 14 70	841 12	1 001 	50 - - -	401 19 750 178 65	
KANSAS	4 107 6 670 6 525 1 344 8 996	7 - 34 1 016	1 941 1 257 5 337 671 1 456	1 562 234	391 1 032 835 75 236	50 90 - 132	9 217 5 144	- 44 23 484	12 184 54 477	42 72 284 139	:	3 757 25 -	
MASSACHUSETTS	3 286 8 353 4 199 1 627 2 053	862 3 247 60 965	183 1 530 1 585 46 1 525	499 97 26 71	1 013 1 624 705 490 250	188 416 303 48 151	115 150 31	104 208 808 - 40	10 739 10	214 - 87	:	105 352 185 26	
MONTANA	2 861 641 1 084 1 210 6 497	45 - 291	650 422 655 410 558	44 - - 423	98 30 54 677	303 375 752 922	588 - 343	598	177 54 - -	23 10 4 253		978 - - -	
NEW MEXICO	4 012 100 695 11 583 1 832 7 228	75 919 1 441 - 332	325 795 3 177 663 1 341	1 180 3 587 318 299	74 1 530 154 62 870	2 275	8 053 289 348 566	2 422 198 -	515 2 292 53	1 164 631 76	:	3 604 6 569 153 -	
OKLAHOMA	1 453 6 070 9 264 752 4 974	372 30 2 660 590	462 2 320 993 - 3 197	136 1 942 1 654 137	256 49 1 917 33 85	. 60 22 411	180 501 401 19	640 10 84	29 99 183	59 401 250 128		300 304 455	
SOUTH DAKOTA	1 262 1 168 11 836 1 918 188	58 1 328 8	1 089 543 3 968 63	105 205 1 461	19 145 2 203 137	242 426 31 131	132 46	75 298 1	153 146 	37	:	458 85	a l
VIRGINIA	5 155 12 062 859 4 993 716	146 140 124 423	229 2 892 137 891 586	1 120 89 - 67	2 143 1 334 119 87 23	116 5 356 56 797	17 - - 29	585 901 1 699	100 188 180 216	71 24 202 371 48		292 40 398	

MOTE: Because of rounding, detail may not add to totals.

SOURCE: National Science Foundation

⁻ Represents zero.

Table B-3. State agency expenditures for research and development by State, source of funds, and R&D plant: FY 1977

	Total research	h and dev	elopment an	d RAD plant		lesearch and	l developmen	t.		245 p	lant	
State	Total	Federal Govern- ment sources	Own State sources	Other b	Total	Federat Govern- ment sources	Own State sources	Other sources b	Total	Federal Govern- meat sources	Own State sources	Other
TOTAL	370 192	145 158	205 710	19 323	358 473	142 036	197 561	18 877	11 717	3 122	8 199	441
ALASAMA	1 359 7 855 1 741 544 37 832	926 3 967 1 283 292 13 317	418 3 787 456 252 23 740	15 201 2 775	1 227 7 655 1 664 503 37 496	927 3 842 1 253 292 13 245	365 3 612 429 211 23 659	201 201 2	132 200 57 41 336	99 25 30 72	33 175 27 41 61	163
COLORADO	9 648 5 195 696 14 730 3 201	7 997 2 259 471 5 518 1 950	1 614 2 621 725 8 629 1 251	37 315 594	9 620 4 874 611 13 474 3 199	7 974 2 259 409 5 515 1 948	1 609 2 300 202 7 374 1 251	37 313 584	28 371 84 1 256	23 62 2	321 22 1 254	
MAWAII	3 370 1 690 16 380 4 101 2 160	317 1 083 6 932 1 430 919	2 795 595 10 995 2 670 1 242	43 13 453	2 873 1 690 17 908 4 059 2 097	537 1 083 6 892 1 430 918	2 298 595 10 563 2 658 1 179	43 13 453	497 472 12 63	11011	497 432 12 63	
KANSAS	4 137 A 182 7 287 1 349 9 093	2 849 1 156 2 359 672 1 255	987 A 929 4 928 670 7 703	300 97 - 7 133	4 107 6 670 6 525 1 344 6 996	2 819 1 156 2 076 671 1 255	987 5 418 4 450 666 7 606	300 97 7 135	30 1 511 761 5	30 284 1	1 511 978 4	
MASSACHUSETTS	3 330 8 574 4 247 1 627 2 169	1 40 2 3 390 1 160 719 1 421	2 075 4 911 3 035 909 741	73 273 52 52	3 286 8 353 4 199 1 627 2 053	1 374 3 312 1 160 719 1 413	1 839 4 797 2 987 909 634	73 244 52	264 221 48 115	28 78	234 114 48 -	2
PONTANA	2 967 675 1 116 1 292 8 740	1 074 409 916 1 001 3 41H	1 787 266 200 291 2 120	3 202	2 861 641 1 084 1 210 8 497	1 072 389 884 940 3 248	1 783 232 199 270 2 060	3 191	34 32 42 243	20 31 61 171	19 1 21 60	1
IEW MEXICO	4 501 102 258 11 703 1 931 7 239	1 540 27 571 5 749 743 1 852	2 635 64 738 5 141 1 176 5 313	326 9 950 814 12	4 012 100 695 11 583 1 832 7 228	1 306 26 667 3 693 743 1 882	2 380 64 298 5 076 1 077 5 302	326 9 732 814 12 44	467 1 563 120 99 11	234 904 55	255 441 63 99	21
ORLANDMA,	1 550 6 160 9 268 653 5 651	894 4 212 3 496 217 2 813	635 1 840 5 716 591 2 869	106 56 45	·1 953 6 070 9 264 752 4 974	809 4 212 3 496 217 2 786	643 1 750 5 712 491 2 189	108 36 45	97 90 4 101 707	85 1 77	17 90 4 100 680	
COUTH CARCTA	1 262 1 175 12 113 2 332 188	369 646 6 462 1 254 68	872 519 9 984 1 058 100	7 646 20	1 262 1 168 11 836 1 918 188	389 643 6 275 1 099 88	872 518 4 914 803 100	7 648 15	6 277 415	207 199	1 70 255	
VIRGINIA	5 501 12 184 1 110 5 030 748	2 119 9 214 982 2 450 541	3 305 2 660 228 2 282 188	76 310 298 19	3 135 12 062 859 4 993 716	2 119 9 116 631 2 443 517	2 959 2 637 227 2 251 180	76 310 298	346 121 251 38 32	98 251 7 29	346 23 31 8	

MOTE: Secouse of rounding, detail may not add to totals.

SOURCE: National Science Payadation

⁻ Represents sero or less than \$500.

Alichades own agency funds and funds provided by other agencies of the same State.

Includes grants, relaburaments, or cust-sharing amounts provided by foundations, business firms, universities and colleges, or other outside sources, such as agencies of other State governments.

Table B-7. State agency expenditures for research and development by State and field of science: FY 1977

State	Tot al	Biologi cal	Medical actences	Peychology	Physical aciences	Inviruq- mental sciences	Mathermatics and computer sciences	Engt- neering	Economics	Social sciences other than economics	Other
TOTAL	358 473	114 840	41 883	10 315	10 072	38 300	6 938	42 727	15 100	63 389	14 909
ALABAMA	1 227	365	6	115	-	14	107	87		269	70
ALASKA	7 655	5 827		_	-1	-	- 1	351	732	64	660
ARIZONA	1 684	402		110	-	-		593	271	180	124
ARKANSAS	37 496	9 513	13		1 133	4 490	65	9 141	1 559	7 242	2 742
COLORADO	9 620	2 46 7 2 21 1	46	177	28	203	50	120 729	50	6 630	131 453
CONNECTICUT	611	166	11	64	28	258	31	124	98	36	39
FLORIDA	1.3 479	5 3 24	50		27	144	131	2 020	1, 781	2 978	
GEORGIA	3 199	609	40		-	-	-	666	17	1 617	-
HAWAII	2 673	1 185	-	7	-	47	· - 1	157		1 011	466
I DAHO	1 690	1 341	-	-	4	16	- 1	97	95	10	128
ILLINOIS	17 908	2 94 5	237		2 634	4 709		1 105	978	3 320	910
INDIANA	2 097	31 9	1 578	39	992	616	10	664 459	100	348 367	39
	325		13								
KANSAS	4 10 7	1 494	1	12	280			662	62	1 554	42
KENTUCKY	6 525	1 556 5 143	3	-1	516	458 94	130	3 556	186	248 284	76
LOUISIANA , , , , ,	1 3 44	690		34		328	23	52	25 70	284	139
MARYLAND		683	661		-	5 965	42	224	503	° 654	13
MASSACHUSETTS	3 286	517	300	88		88	117	940	184	988	64
MICHIGAN.	8 353	1 A17	2 364		-1	97	68	1 059	1 151	886	106
MINNESOTA . ' ' . ' . ' . ' . ' '	4 199	1 284	19	15	285	268	52	759	269	1 126	121
	1 627	696	300	-1	-	72	-	490	-	20	50
#1550UR1 * * * *	2 053	1 343		-	-	1 42	40	520	104	121	14
MONTANA	2 861	534	450		-	345	46	966	336	79	51
NEBRASKA	641	436	-	1 25	-1	66	7	.10	58	26	-
NEVADA	1 084	635 433	1		-1	30	.375	24	-	20	-
NEW HAMPSHIRE	1 210	952	1	434		5 5 3 6	722	494	110	2 817	3 164
NEW MEXICO	4 012	300				71.7	1	678	185		1 048
NEW YORK	1 00 495	37 522	32 257	2 213	1 084	1 0 261	3 735	4 167	1 543	7 113	392
NORTH CAROLINA	11 583	6 529	205		165	110	54	- 107	366	4 1 05	
NORTH DAKOTA	1 632	379			12	596	-	62	346	409	29
онто	7 228	549	1 ดก	236	6	5 000	47	3 219	589	426	45
OKLAHOMA	1 453	480	355	18	. 40	291	- 1	93	96	1 00	
OREGON	6 070	5 600	30			881	-	49	431	1 942	77
PENNSYLVANIA	9 264	649	533	720	-	1 753	120	1 659	365	1 587	1 376
RHODE ISLAND	4 974	3 503	548	230		71	128	311 67	69	1 69 267	250 92
						S		7.7			
SOUTH DAKOTA	1 262 1 168	429 398				640 255		19	21	153	- 0
TEXAS	11 A36	4 275	361	431	1 303	548	17	2 513	640	1 394	335
UTAH	1 918			71		163	•:	252	540	1 492	323
VERHONT	188	-	-	131	-	53		23	11	,.	-
VIRGINIA	5 155	643		75	_	415	456	1 656	130	4 04	1 375
WASHINGTON	12 042	3 333	72	242	-	544	11 0	839	386	6 537	. ,
WEST VIRGINIA	859	137	35 247		1	-	54	65	105	373	89
WISCONSIN	4 993	991	247	725	-1	3	136	84	633	2 093	AO
WYOMENG	746	249	49	-	· -	43	-	13	.362		-

NOTE: Secause of rounding, detail may not add to totals.

SOURCE: National Science Foundation

⁻ Represents sere or less than \$500.

NATIONAL SCIENCE FOUNDATION WASHINGTON DC 20550

DRAFT STATE R&D SURVEY--1987 - FOR COMMENT

SECTION I -- FUNDING OF RESEARCH AND DEVELOPMENT

310	TION I TONDING OF MIDDING IN THE BEVELOUIS	
1.	Total R&D Expenditures (Distributed by t	ype below)
	A. Current R&D Expenditures, Total	s - Leure \$
	Basic Research Applied Research Development	\$ \$ \$
	B. R&D Plant	\$
2.	Total R&D Expenditures by Source Current R&D Expenditurestotal should equal item 1A.	\$
	A. Federal Government Sources B. Own Sources C. Industrial Sources D. Otherspecify in "NOTES"	\$ \$ \$ \$
3.	Total R&D Plant Expenditures by Source Current R&D Expenditurestotal should equal item 1B.	\$
	A. Federal Government Sources (See #5) B. Own Sources C. Industrial Sources D. Otherspecify in "NOTES"	\$ \$ \$ \$
4.	Total R&D Expenditures by Performer Current R&D Expenditurestotal should equal item 1A.	\$
	A. R&D work performed directly by State	\$
	Grants, contracts, and reimbursements to: B. State universities and colleges C. Private universities and colleges D. Nonprofit organizations E. Private individuals or firms	\$ \$ \$

5.	Supp	orting Federal Agencies	
		cral Totaltotal should equal item 3A. \$ ICIES: Solution	
6.	 Total R&D Expenditures by Field of Science/Engineering (Estimates are acceptable.) 		eering
	Curr	ent R&D Expenditurestotal should equal item 1A. \$_	
	C. D. E. F. G. H.	Medical Sciences Biological Sciences Psychology Physical Sciences Environmental Sciences Mathematics Computer Sciences Engineering Social Sciences Other sciences not elsewhere classified	
7. Total R&D Expenditures by Functional Area			
	A.B.C.D.E.F.G.H.I.J.K.L.	Education Transportation	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

...

Enhancing the Economic Output of the Federal Laboratories: New Initiatives

"Overview of Technology Transfer Legislation and Programs"

presented by

Mr. Norm Peterson Strategic Planning Group Argonne National Laboratory

FEDERAL LEGISLATION ON TECHNOLOGY TRANSFER

(ORTA) AND CENTER FUR UTILIZATION OF FEDERAL TECHNOLOGY (CUFT) ESTABLISHED OFFICES OF RESEARCH STECHNOLOGY APPLICATIONS, STEVENSON-NYDLER ACT: PL 96-480 (1980)

ESTABLISHED NEW PATENT HIGHTS TO INVENTIONS BY SYMLI BUSINESS FIRMS AND NONPHUFIT ONGAJIZATIONS BAYH-DOLE BILL: PL 98-620 (1984)

FEDERAL TECHNOLOGY TNANSFER ACT: PE 99-502 (1986)
COOPERATIVE RED ACREENENTS

EXTENDS PATENT POLICY TO CIVIL SERVICE LABS
INSTITUTIONALIZES THE FEDERAL LAB CONSORTIUM

FEDERAL TECHNOLOGY TRANSFER ACT OF 1986

(P.L. 99-502) signed tropresent on outter, 186

I. MAJOR FEATURES

- GIVES LABORATORY DIRECTORS LATITUDE TO ENTER INTO COOPERATIVE RESEARCH AGREEMENTS WITH OTHER AGENCIES, INDUSTRY **AND UNIVERSITIES**
- **AUTHORIZES DISTRIBUTION OF ROYALTY INCOME FROM EICENSING AND** ASSIGNMENT OF PATENTS DIRECTLY TO THE INVENTORS AND THE LABORATORIES PRODUCING THEM
- MAKES TECHNOLOGY TRANSFER A JOB REQUIREMENT OF EVERY LABORATORY SCIENTIST AND ENGINEER
- INVOLVEMENT IN OVERALL LAB MANAGEMENT DEVELOPMENT PROGRAM INCREASES OFFICE OF RESEARCH TECHNOLOGY ASSESSMENT (ORTA)
- PROVIDES HOME FOR THE FEDERAL LABORATORY CONSORTIUM (FLC) WITHIN THE NATIONAL BUREAU OF STANDARDS

FEDERAL TECHNOLOGY TRANSFER ACT **OF 1986**

DEFINITION: COOPERATIVE RESEARCH DEVELOPMENT AGREEMENT

OR OTHER RESOURCES TOWARD THE CONMINCT OF SPECIFIED RESEARCH AGREEMENT AS THOSE TERMS ARE USED IN SECTIONS 6303, 6304, AND EQUIP**ment, or o**ther resources with or without reimbursement '(1) THE TERM 'COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT' MEANS ANY AGREEMENT BETWEEN ONE OR MORE FEDERAL LABORATORIES PARTIES PROMIDE FUNDS, PERSONNEL, SERVICES, FACILITIES, EQUIPMENT, THROUGH ITS LABORATORIES, PROVIDES PERSONNEL, SERVICES, FACILITIES, AND ONE OR MORE NON-FEDERAL PARTIES UNDER WHICH THE GOVERNMENT, BUT NOT FUNDS TO NON-FEDERAL PARTIES) AND THE NON-FEDERAL MISSIONS OF THE LABORATORY; EXCEPT THAT SUCH TERM DOES OR DEVELOPMENT EFFORTS WHICH ARE CONSISTENT WITH THE NOT INCLUDE A PROCUREMENT CONTRACT OR COOPERATIVE 6305 OF THILE 31, UNITED STATES CODE."

P.L. 98-620 IPPEHENTATION AT ARGOINE

UNIVERSITY OF CHICAGO AND DEE SIGN NEW CONTRACT TO SPENATE ARGONNE WITH NEW PATENT LANSWAGE, JUNE 1987

ABOUT 40 PATENTS WAIVED TO UNIVERSITY OF CHICAGO

PRESIDENT APPOINTED ARCH DEVELOPHENT CONFIDATION FORKED IN 1985. OCTOBER, 1986.

ARCH COMPLETES FIRST LICENSING JULY 1987.

BLE FOR LICENSING: ARGONNE PUBLISHES LIST OF PATENTS UPDATED ANNUALLY.

COOPERATIVE RED AWKERENTS

AFFILIATES PROGRAMS

WORK-FOR-OTHERS (CONTINACT NESEARCH BY SUBCONTRACTS (INDUSTRY WORKS FOR LABS

INDUSTRY RESIDENCIES

USE OF HAJOR FACILITIES

LICENSING OF PATENTS

TECHNOLOGY TRANSFER AT ANL

- Cooperation with single companies
- Assistance to small technology-based businesses
- Patents and inventions: ARCH
- Industry-wide initiatives
- Encouragement of commercialization

ARGONNE - UNIVERSITY OF CHICAGO DEVELOPMENT CORPORATION (ARCH)

A not-for-profit institution that takes title to inventions/patents from Argonne and University of Chicago

- Exploits inventions by:
- licensing to existing businesses
 - starting new companies
- Revenues used for:
- operating expenses of ARCH
 - awards to inventors
- development of inventions to commercialization (possibly cost-shared with firms)
- Modified contract signed June 5, 1987

TECHNOLOGY TRANSFER TO SMALL BUSINESSES

- State grant established ANL as a state technology commercialization center
- Worked with over 100 small businesses on:
- technology assistance
- access to Laboratory facilities
- advice on state financial help
- how to apply for SBIR awards
- Argonne Regional Consortium
- Licensing/Ventures

INTERACTION WITH SINGLE COMPANIES

- Work for Others
- Cabot Corporation: Packing of powders
- Bethlehem Steel: Strip casting
- McDonalds: Heat transfer in frying
- Gould: Vehicle battery
- Staff Exchange
- Exxon Corporation: Mathematics
- Allied Signal: Ceramics
- Schlumberger-Doll: Use of IPNS
- Dow: Residency program

ARGONNE'S NEW INITIATIVES WITH INDUSTRY

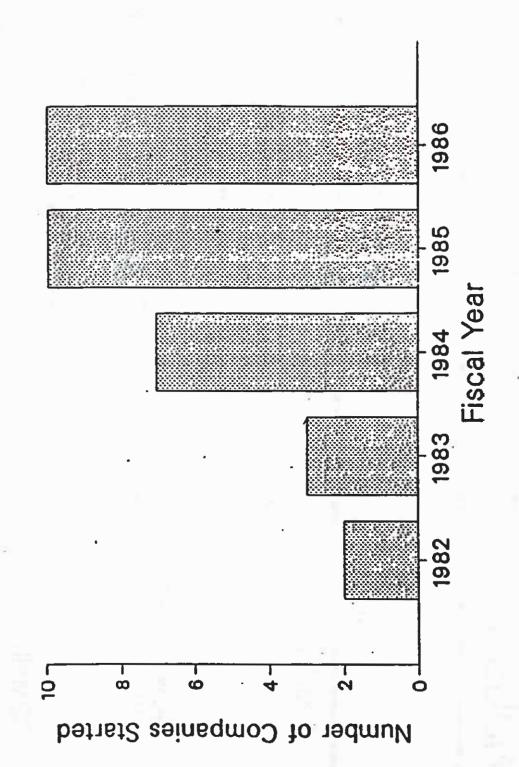
- long-term competitiveness of basic Generic technology to assure the industries in the USA
- Strong Illinois and Midwest focus
- Midwest industry will be the major benefactor

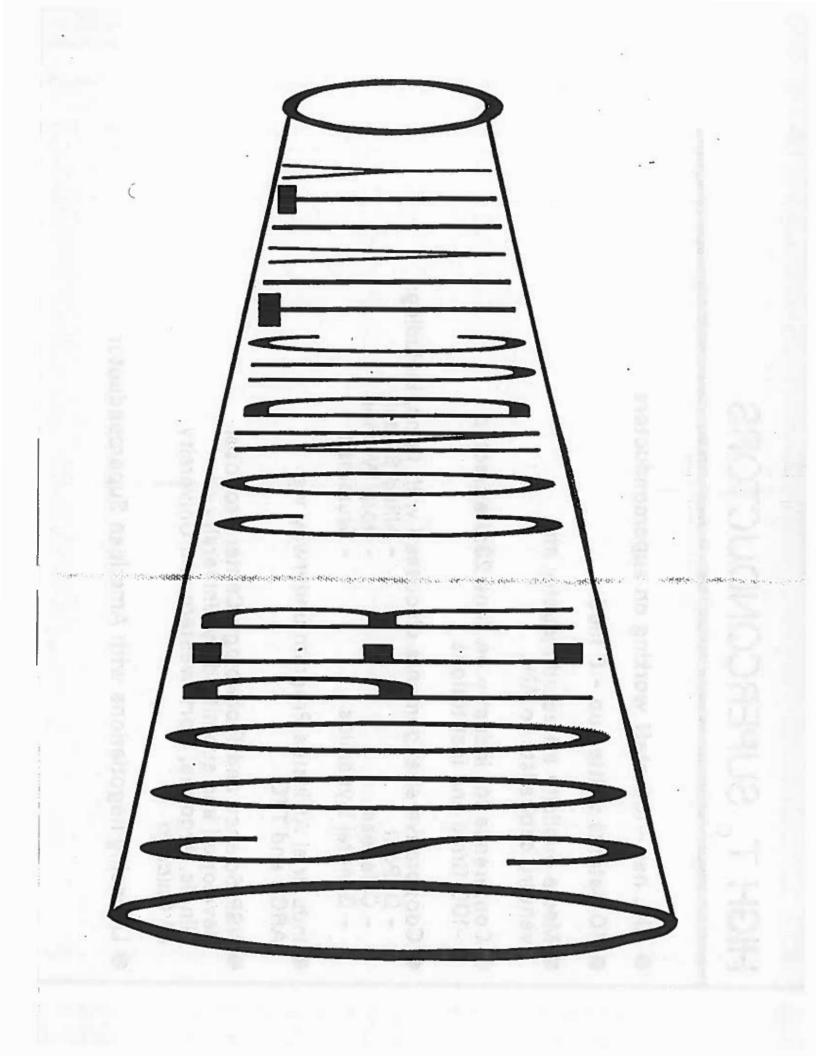
INDUSTRY-WIDE INITIATIVES

Initiative

Purpose

Steel Initiative


To develop new processes giving economic "edge" to U.S. industry


Midwest Plant Biotechnology Consortium

To develop/transfer results of basic research to industry such that new products/processes result

COMMIX

Computer modeling for metals casting (Ford, Cummins, Dohler-Jarvis, Kohler, CWC Textron, etc.)

HIGH T_c SUPERCONDUCTORS

■ ANL has ~100 staff working on superconductors

40 patents written up - 8 filed

Media publicity attracted industry and venture capitalists to ANL Conference for industry on June 23rd attracted ~100 firms and institutions Cooperative arrangements discussed with firms, including: - Allied Signal - Borg Warner

DuPont

- Celanese

General Dynamics

- Grumman

Industrial Affiliates Program underway via ARCH and TTC

Illinois, Argonne, Northwestern and University NSF Science and Technology Center proposal developed and submitted by University of

Licensing negotiations with American Superconductor

Enhancing the Economic Output of the Federal Laboratories: New Initiatives

presented by

Mr. Ray Gilbert, Manager
Applications Engineering
National Aeronautics and Space Administration
Technology Utilization Division

National Aeronautics and Space Administration

BRIEFING TO

Diviting 10

NATIONAL GOVERNOR'S ASSOCIATION MEETING

Discovery, Intpleyenevery, or Introvettes

RAY L. GILBERT APRIL 29, 1988

TECHNOLOGY UTILIZATION PROGRAM MANDATE SPACE ACT (1958)

Space Act Provides For:

Section 305(B)

New Technology Reporting on any Invention, Discovery, Improvement, or Innovation

Section 203(A)(B)

Widest Practical and Appropriate

Dissemination of Information on New

Technology

Section 102(F)

Programs Application of NASA's Capabilities and Competance to Development and Demonstration

Executive Order 12591 APRIL 1987

- Technology Share Program Establishment of of promoting long-term national competitiveness. centered around a federal laboratory for purpose consortia of universities and private companies
- Requires agency heads to identify and encourage promoting technology transfer for commercial those persons and organizations best capable of of Shelvest and goloneps

A VINSISTANDED B ST 1810/1910 VOCIDARSONY

Technology Transfer Act of 1986 (P.L. 99-502)

- Technology transfer is a responsibility of each scientist addition to being a criteria for promotion. and engineer as a part of their position description in
- Provides other federal agencies the flexibility and organizations. able to enter into cooperative agreements with outside opportunity that NASA had under the Space Act - to be
- Requires agencies to reward inventors by participation in return flow of royalty income.
- Encourages recognition of those persons sucessfully contributing to technology transfer activities
- Allows participation of federal agencies in activities development. and private sector companies for purposes of economic involving local & state governments, universities,

PROGRAM OBJECTIVES

- and Space Technology by the Private Sector Accelerate Application and Use of Aeronautics
- and Academia of NASA Technology by Public and Private Sector Facilitate Multiple Secondary Uses and Application
- **Process** Continue to Improve NASA Technology Transfer
- Promote Application of NASA Expertise and Capabilities to Non-Aerospace Needs of the Nation

- Acquisition, Dissemination, & Network Operations
- New Technology Reporting, Evaluation, & Preparation
- 2 Contractors Involved (900 New Technologies / Year)
- 10 Industrial Applications Centers (IACs)
- 10 Contractors Involved (Mostly University Based) with 10,000 Industries / Clients Served per Year
- 1500 Software Programs Computer Software Managent & Information Center
- 1 Contractor Involved
- Automation & Systems Integration
- Centers & IACs Involved) Technology Utilization Network System (All Field
- 1 Contractor Involved (Development, Integration, Testing

- Acquisition, Dissemination, & Network Operations (Cont.)
- Technology Utilization Officers / Counselors
- 5 IAC Contractors Involved at Field Centers (Valueadded Engineering)
- Field Center Technology Utilization/Transfer Office at Each
- Industrial Applications Center Affiliates (Nationwide)
- 30 State Assistance Centers (On-board)
- 12 State Assistance Centers (Being Negotiated)
- All Industrial Applications Centers Involved
- Small Business Technology Transfer Operations
- Developing Agreement with Small Business Administration
- 51 Small Business Development Centers Affiliates (parents) involved
- Affiliates involved Over 500 Small Business Development Centers

Technology - Engineering Applications

- Applications Engineering Projects (60 at Field Centers)
- Automation & Robotics (10%)
- Bioengineering / Biotechnology (30%)
- Advanced Materials / Composites (15%)
- Electronics / Semiconductors (25%)
- Rehabilitation (20%)
- Technology Applications Teams
- 2 Contractors involved to Assist Field Centers with Applications Projects
- Clients: / Other Government Organizations Broker & Go-between at Field Centers and Industrial

Project Development

- Publications & Printing (Bi-monthly NASA Tech Briefs Journal and Annual Spinoff Magazine)
- 2 Contractors involved
- Brouchures / Films / Exhibits
- 2 Contractors Involved
- Commercialization Database / Software Development
- 3 Contractors Involved

Industrial Outreach

- All Industrial Applications Centers
- Industry / Trade Exhibits, Shows, & Expos
- Market Development (Terrestrial Applications)
- Industrial Associations / Professional Societies
- AdaNET Software Repository
- Commercialization Support (All IACs, Boeing Aerospace, and AIAA)
- R&D Federal Labs involved) Federal Laboratory Consortium Network (Over 600

NSN

TECHNOLOGY UTILIZATION DIVISION WHAT WE DO

- Program Development, Evaluation, & Coordination
- Scientific Technical Information Facility Support
- Technical Support Packages (TSPs) for Tech Briefs
- Magazine, TSPs) Dissemination of Publications (Tech Briefs, Spinoff
- Database Enhancements
- Spinoff Case Development, Documentation, & Review
- Surveillance of Tech Briefs Users
- 1 Contractor Involved Handles Approximately
- 1 Million Inquiries per Year
- Market Assessment / Research
- Industry, State, and Local Organizations
- Assess Technology Needs and Technology Gaps
- 2 Contractors Involved
- Contract / Institutional Support
- Institutional Management Support
- Federal Laboratory Consortium Institutional Support
- Defense Contract Administration Support

DISSEMINATION MECHANISMS (History) TECHNOLOGY UTILIZATION

- NASA Tech Briefs Established in 1963
- First Industrial Application Center Established in 1963
- COSMIC (Computer Software Management Center) Established in 1966
- NASA SPINOFF Magazine Established in 1976
- NASA Average Yearly Expenditure Approximately \$5.0M Over Last 10 Years
- Benefit to Cost Ratio of 14:1

NASA Milestones in Technology Transfer Dissemination History

Tech Briefs

- One-page summaries of technological breakthroughs for broad distribution to industry (1963-1976)
- In 1976, changed format to quarterly magazine
- Currently published bi-monthly by industrial publisher with distribution of over 200,000 readers
- 12,892 Tech Briefs published from 1963 to 1987
- Industrial Application Centers
- First established in 1963 under agreement with University of Indiana
- Currently 10 IACs
- Provide assistance in technological searching and U.S. businesses access to industrial engineers and scientists for

NASA Milestones in Technology Transfer Dissemination History

COSMIC

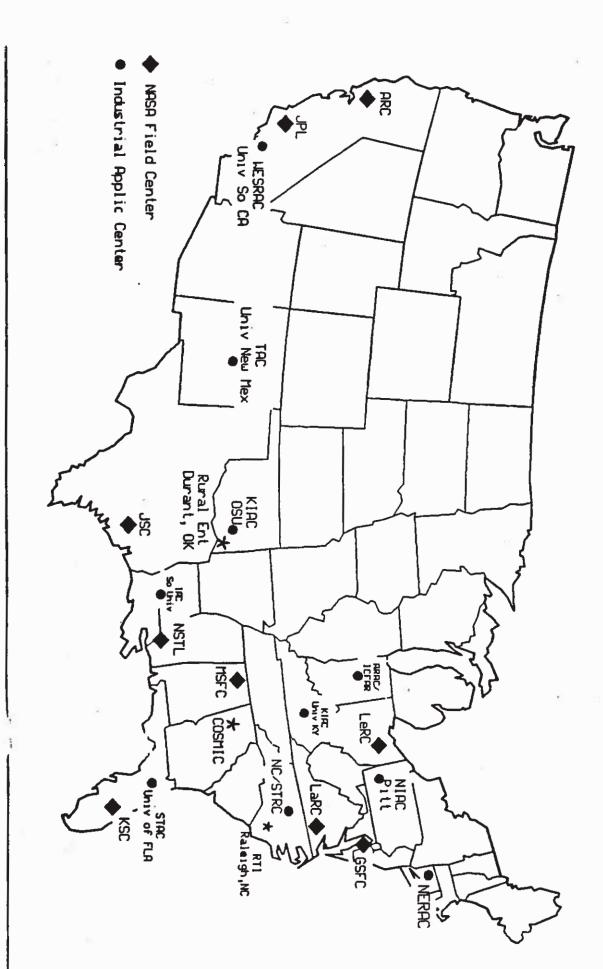
- Dissemination of NASA computer software programs
- Established in 1966 via bilateral agreement with from Marshall Space Flight Center University of Georgia as distributor of software
- Range broadened in 1968 to include distribution of all NASA-developed software to both NASA field centers and private users
- NASA centers use 25% of documented COSMIC programs

NASA Milestones in Technology Transfer Dissemination History

Spinoff Magazine

- Initiated in 1976 as an upgraded version of the dramatic presentation of sucessful transfers annual TU report providing a more graphic and
- Over 500 transfer cases reported up to 1988
- Space Benefits, a related publication, was on a wide variety of transfer cases and the benefits derived from them initiated simultaneously and provides vignettes
- Annual publication of 45 to 60 SPINOFF cases

DISSEMINATION CENTERS


OBJECTIVES

- and Application of NASA Technology Provide Means for Acquisition, Dissemination,
- and Management Information Provide Private Sector Access to NASA Technical
- Sector Problems Utilize NASA Capabilities to Solve Private
- New Businesses and Expanded Product Lines Contribute to Private Sector Development of

NSN

DISSEMINATION/APPLICATION NETWORK TECHNOLOGY UTILIZATION

TOTAL TSPs BY YEAR

1964 - 1984

Number of TSPs	3507	6105	8268	9878	13451	9452	16996	51731	68144	40485	32108	28105	53602	125586	63312	190325	151866	78180	54415	71522	83113	60152	107994
Calendar Year	1964	1965		1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1981	1982	1983	1984	1985	1986	1987

Average Total per Year:

64,182

TECHNOLOGY UTILIZATION INDUSTRIAL OUTREACH

OBJECTIVE

services, and opportunities offered by NASA in Commercial Uses of Space (CUS), Technology Utilization, and Small To encourage private sector investment in products, Business Innovation Research (SBIR) programs.

GOALS

- Foster cooperative activities in space-related research for commercial purposes
- Encourage the effective application and use of NASA technology in industry
- Enhance submittal of effective innovative proposals to further the scientific and technical needs of the Agency through SBIR grants

NEW TECHNOLOGY REPORTING

! !																									
738	1082	3324	4108	4680	3927	3594	2905	2978	1898	1437	1560	1823	1916	1778	1789	1628	1628	1410	1221	1074	1159	1399	727	49,783	
427	218	328	477		664			369	338	348	359	497	562	305	314	488	643	491	381	362	447	200	310	10,273	
311	864			4038	3263			2609				1326	1354	1473			1085	919		712	712		417	39,430	
1964		1966				0	_	1972	ത	4	10	1976	7	60	1979	1980				1984	1985		1987	Totals:	
	311 4	1964 311 427 1965 864 218	311 427 864 218 2996 328	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664	1964 311 1965 864 1966 2996 1967 3631 1968 4038 1969 3263 1970 3121	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430	1964 311 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 338	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 338 1974 1089 348	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 338 1974 1089 348 1975 1201 359	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 338 1974 1089 348 1975 1201 359 1976 497	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 338 1974 1089 348 1975 1201 359 1976 1326 497 1977 1354 562	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1974 1089 348 1975 1201 359 1976 1326 497 1977 1354 562 1978 1473 305	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1974 1089 348 1975 1201 359 1976 1326 497 1977 1354 562 1978 1473 305 1979 1475 314	1964 311 427 1965 2996 328 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1974 1089 348 1975 1201 359 1976 1326 497 1977 1354 562 1978 1473 305 1979 1475 314 1980 1140 488	1964 311 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 338 1974 1089 348 1975 1326 497 1976 1473 305 1978 1473 305 1979 1475 314 1980 1140 488 1981 1085 643	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 338 1974 1089 348 1975 1326 497 1978 1473 305 1979 1475 314 1980 1140 488 1981 1085 543 1982 919 491	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 348 1974 1089 348 1975 1201 359 1976 1326 497 1978 1473 305 1979 1475 314 1980 1140 488 1981 1085 643 1983 840 381	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 348 1975 1201 359 1976 1326 497 1979 1475 314 1980 1140 488 1981 1085 543 1983 840 381 1984 712 362	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 338 1974 1201 359 1975 1326 497 1976 1354 562 1977 1473 305 1980 1140 488 1981 1085 643 1982 919 491 1983 840 381 1984 712 362 1985 712 447	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 3263 642 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 338 1974 1089 348 1975 1326 497 1976 1326 497 1977 1473 305 1978 1475 314 1980 1140 488 1981 1085 643 1983 840 381 1984 712 362 1985 712 447 1986 712 447 1986 712 447	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 4038 642 1969 3263 664 1970 3121 473 1971 2475 473 1972 2609 369 1973 1560 338 1974 1089 348 1975 1326 497 1976 1326 497 1978 1475 314 1980 1140 488 1981 1085 643 1982 840 361 1984 712 361 1985 840 362 1986 899 500 1987 417 310	1964 311 427 1965 864 218 1966 2996 328 1967 3631 477 1968 3263 642 1969 3263 664 1970 3121 473 1971 2475 430 1972 2609 369 1973 1560 338 1974 1201 497 1975 1201 497 1976 1326 497 1977 1473 305 1978 1447 314 1980 1140 488 1981 1085 643 1982 840 381 1983 840 382 1984 712 447 1986 899 500 1987 417 310 1987 417 310

OF NASA TECHNOLOGY TO SPINOFF TECH BRIEF CONTRIBUTION

- 48,783 New Technology Reports from 1964 to 1987
- 12,892 of These New Technology Reports Published in Tech Briefs
- In Response to Published Tech Briefs, 1,540,360 Requests for Technology Support Packages Received

TECHNOLOGY UTILIZATION - 1987 SPINOFFS 1976

~
0
0
Ü
M
1
A

CATEGORY	9/	77	78	79	80	8	82	83	84	85	86	87	6
Transportation	4	9	4	9	Ŋ		9		7		4	8	44
Manuf Technology	ıO	ന		œ	9	œ	7	9	F	F	œ	7	80
Health & Medicine	4	=	8	7	5	Ŋ	9	9	₂	œ	œ	Ŋ	86
	7	7	ω	7	Ŋ	7	_	4	က	ι	က	ന	99
Construction	Ŋ	4	9	ß	9			ß		6			44
Environ/Resrc Mgmt	œ	2			7			4		2	5	9	40
Energy	က			9	7	တ		Ŋ		9	9	ω	50
Food & Agriculture		5	4		2						5		19
Home/Consumer Rec	4	-	F	ß	ß	4	S	9	4	5	3	7	70
Community Services			œ	9	4	10							27
Computer Processes			ే										
Comm Remote Sensing							Ω.						Ŋ
Technology Demos							7	4	7				18

549

44 38

55

54

53

56 42

Totals:

TECHNOLOGY TRANSFER SPINOFF TRACKING SUCCESS

- Clipping Services Daily & Weekly U.S. Newspapers
 - Trade Press
- TU Officers
- IAC Directors
- COSMIC
- **Technology Applications Teams**
- Technology Support Package (TSP) Followup

APPLICATIONS

NASA TECHNOLOGY TRANSFER PROCESS

- Requirements
- Other Federal or Mission Agencies (VA,NIHR, NIA, etc)
- NASA Applications Teams (RTI and REI)
- Private Sector
- Feasibility
- Understand the Problem
- Determine Available Technology
- Determine if Match of Technology to Problem is Likely
- Project
- Selection of Manufacturer
- Test, Demonstration, and Evaluation
- Commercialization

NASA Milestones in Technology Transfer **Applications History**

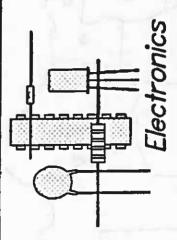
- Technology Applications Teams
- Established in 1971 to provide assistance from specialized group of experts
 - Currently two TA teams operating: Research Triangle Institute Rural Enterprises, Inc.
- Technology Counselors
- Initiated in 1978 to provide a more direct link
 - between IACs and NASA field centers
- familiar with center and know programs and personnel Typically retired scientists or engineers who are

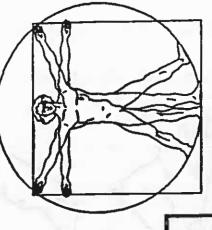
NASA Milestones In Technology Transfer **Applications History**

Application Engineering Projects

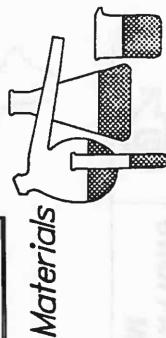
- Established in 1970 to provide direct NASA assistance & primary funding to promote secondary use of aerospace technology
- test prototype hardware if industrial partner prepared to complete marketing of transfer agrees to provide partial funding and is Involves cooperative efforts to build and
- Over 150 projects initiated with 75 sucessful transfers completed
 - Bioengineering 40% Materials - 10%, Electronics - 20%, Rehabilitation - 20% -Automation - 10%,

APPLICATIONS MECHANISMS (History) TECHNOLOGY UTILIZATION




- Applications Engineering Projects Established in 1970
- Technology Application Teams Established in 1971
- Technology Counselors Established in 1978
- NASA Average Yearly Expenditure Approximately \$4.0M Over Last 10 Years
- Benefit to Cost Ratio of 8:1

NASA TECHNOLOGY APPLICATIONS

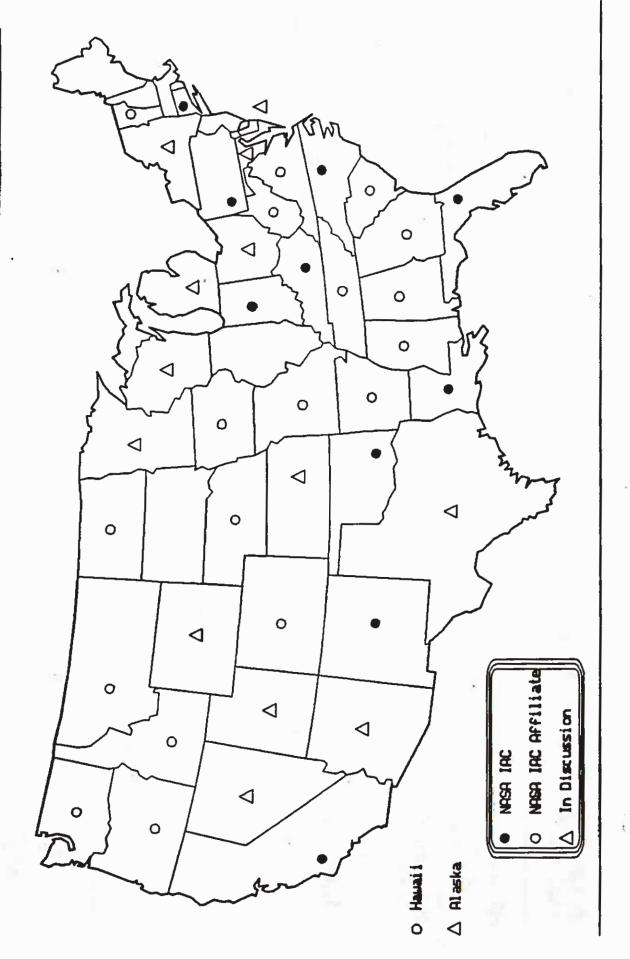


Bioengineering

TECHNOLOGY APPLICATIONS OBJECTIVE

Automation

To Promote the Application of Aeronautics and Space Technology Through Cooperative Programs


Rehabilitation

NASA

NASA INDUSTRIAL APPLICATIONS AFFILIATE PROGRAM

IAC TERRITORIAL ASSIGNMENTS

ARAC - Indiana, Illinois, Missouri, Iowa, Michigan, Wisconsin, Minnesota Oklahoma, Texas, Kansas, Nebraska, KIAC

South Dakota, North Dakota

North Carolina, South Carolina, Virginia, Tennesee, West Virginia NC/STRC

California, Nevada, Idaho, Oregon, Hawaii, Washington, Alaska WESRAC

Florida, Georgia, Alabama, Mississippl, STAC

Arkansas

UKTAP - Kentucky

Connecticut, New York, Massachusetts, NERAC

Rhode Island, New Hampshire, Maine,

Vermont, New Jersey

C - New Mexico, Arizona, Utah, Wyoming, Colorado, Montana Pennsiyvania, Ohio, Maryland, Delaware NIAC

SU IAC - Louisiana

NASA INDUSTRIAL APPLICATION CENTERS

NAME	ACRONYM	AFFILIATION	LOCATION
earch	ARAC	ICFAR/INDIANA UNIVERSITY	INDIANAPOLIS,IN
Computer Software Management Center	COSMIC	UNIVERSITY OF GEORGIA	ATHENS, GA
Kerr Industrial Applications Center	KIAC	SOUTHEASTERN OKLAHOMA STATE UNIVERSITY	DURANT, OK
NASA Industrial Applications Center	NIAC	UNIVERSITY OF PITTSBURGH	PITTSBURGH,PA
New England Research Applications Center	NERAC	NOT FOR PROFIT	STORRS,CT
N. Carolina Science & Tech Research Center	NC/STRC	UNIVERSITY OF NORTH CAROLINA	RALEIGH-DURHAM,NC
Southern Technology Application Center	9TAC	UNIVERSITY OF FLORIDA	GAINESVILLE,FL
Technology Applications Center	TAC	UNIVERSITY OF NEW MEXICO	ALBUQUERQUE,NM
NASA/UK Technology Applications Program	UKTAP	UNIVERSITY OF KENTUCKY	LEXINGTON,KY
NASA industrial Applications Center	WESHAC	UNIVERSITY OF SOUTHERN CALIFORNIA	LOS ANGELES,CA
NASA industrial Applications Center	3U-IAG	SOUTHERN UNIVERSITY	BATON ROUGE,LA

Foreign Trade Opportunities for State Technology Programs

presented by

Dr. Robert Yuan
Senior Advisor in Biotechnology
U.S. International Trade Administration

THE INTERNATIONAL EXPERIENCE IN TECHNOLOGY TRANSFER

Dr. Robert Yuan

Senior Adviser in Biotechnology to the U.S.
International Trade Administration

section have a man all policines by tourness and an arriver tagger of

REMARKS TO
THE NATIONAL CONFERENCE ON COLLABORATIVE INITIATIVES
IN BIOTECHNOLOGY
NOVEMBER 2, 1987

the residence to remain any property of their distinct or executive or

THE INTERNATIONAL EXPERIENCE IN TECHNOLOGY TRANSFER

Technology transfer is the process by which research findings are introduced into the industrial sector and converted into new products and processes. Recently, the International Trade Administration, U.S. Department of Commerce, has carried out a series of studies on biotechnology in Western Europe and the Far East.

In this paper, the mechanisms of technology transfer will be reviewed with special emphasis being placed on biotechnology centers. The implications of such developments for state initiatives in biotechnology will be explored.

I. MECHANISMS OF TECHNOLOGY TRANSFER

The principal mechanism for technology transfer in the United States is the creation of new biotechnology companies. Most of these are spinoffs from work carried out in university laboratories and research institutes. Western Europe, in general, and the U.K. in particular, have experimented with more mechanisms of technology transfer than any other region of the world. The newly industrializing countries of the Pacific Rim are starting from a weak research base and concentrating their efforts on technology transfer. Table 1 summarizes the mechanisms for technology transfer observed in Western Europe and the Far East. It cannot be overemphasized that the success or failure of a specific form of technology transfer is a function of a given society and is not necessarily applicable to a different country and a different culture.

1. Institutional Mechanisms

These mechanisms involve long-term commitments and large budgets. The justification for these is that certain types of R&D require an interdisciplinary approach and long-term funding. Government institutes include the network of TNO institutes (Netherlands), the transfer centers (France) and the GBF (West Germany). These institutes have focused on specific research problems (e.g. food processing, waste treatment) and tried to develop joint projects with industry. The Genetic Engineering Research Center (South Korea) and the Development Center for Biotechnology (Taiwan) receive a major portion of the government funds for biotechnology. Though their principal mission is the application of basic research, their first goal has been the introduction of the new technologies from abroad.

Swiss industry has invested heavily in private research institutes such as the Miescher Institute (Ciba-Geigy) and the Roche Institute of Molecular Biology. Though such institutes have done first class research, there have been serious questions as to the effectiveness of the technology transfer. South Korea has also established a large number of private research institutes, and an increasing number of those are in biotechnology. However, recruitment of qualified staff remains a major problem. The Battelle institutes in Frankfurt and Geneva are part of the U.S. not-for-profit organization that does contract R&D for government and industry. It is felt that in biotechnology, they have not been competitive with the small biotechnology companies. Cambridge and

TABLE 1

MECHANISMS OF TECHNOLOGY TRANSFER

- 1. Institutional
 - a. Government institutes
 - b. Private research institutes: corporate or independent
 - c. University biocenters
- d. University science parks
 - 2. Financial
 - a. Grants for applied/generic research: industrial R&D university-industry R&D
 - b. Grants for technological innovation
 - c. Research clubs (government-industry)
 - d. Joint ventures (academic research-industry)
 - 3. Administrative
 - a. University technology transfer office
 - b. Graduate studentships in industry
 - c. Consultantships in industry
 - d. Temporary assignments from academia to industry and vice-versa
 - e. Postdoctoral fellowships and visiting professorships for international collaboration
- f. Research round tables
 - 4. Corporate
 - a. Companies created by the government with special access to public research
 - b. Public Corporation: licenses and invests in public research
 - d. Establishment of new companies
 - 5. Transnational R&D
 - a. Contracts with new biotechnology companies (mainly U.S.)
 - b. Funding of research in foreign countries (mainly in U.S.)

Leicester universities (U.K.) have established biocenters in collaboration with private companies. The biocenters carry out research on topics of interest to those firms.

2. Financial Mechanisms

Government support for applied R&D is an obvious extension of existing mechanisms for funding basic research. Most countries provide grants for applied R&D and technological innovation. There has been a growing emphasis on those projects involving university-industry interactions. The amount of funding is usually not large in comparison to industrial budgets, but is comparable to research grants. Such applied R&D grants provide seed money for new projects, and particularly in Asia, fund projects that would not otherwise be undertaken by private companies. Possibly their most important effect is to involve academic researchers in industrial projects.

Research clubs in the U.K. bring together university laboratories and companies that are interested in a specific research area. For example, the Protein Engineering Club brings together six universities (Bristol, Leeds, Oxford, Sheffield, Birbeck and Imperial) and five companies (Celltech, Glaxo, ICI, RTZ and E. Sturgis). The companies contribute 30,000 pounds (\$38,800) each over four years and the Science and Engineering Research Council 2.5 million pounds (\$3.24 million) over the same period. In addition, the Biological Sciences Committee will fund 900,000 pounds (\$1.16 million) of basic research projects related to protein engineering.

Typical examples of joint ventures include the four companies formed by the Institute Pasteur (France):

- Pasteur Vaccines: production of vaccines and sera. It is owned 49% by the Institute and 51% by the Institut Merieux.
- Diagnostics Pasteur: diagnostics. It is 49% owned by the Institute and 51% by Sanofi.
- Biochem: development of biological pesticides. It is owned 15% by the Institute and 85% by Solvay.
- GIRPI: research on immunostimulants. Three equal partners: the Institute, CHOAY and Sanofi.

Following the patenting of any new discovery at the Pasteur Institute, the affiliate companies examine it for a period of six weeks and have three months in which to decide whether to commercialize it. There are a significant number of agreements with U.S. companies.

3. Administrative Mechanisms

Administrative arrangements have existed for a long time and provide a mechanism for individual involvement in technology transfer. New regulations allow students funded by government fellowships to do research in industry (CASE program in the U.K.). It has also been generally accepted that university faculty members can act as consultants to private firms. This practice is spreading to government research institutes. In addition, countries such as France and West Germany now

allow academic researchers to be seconded to industrial laboratories and vice versa. It is not known whether this has increased the movement of personnel between the academic and industrial sectors and, if so, whether it has had much effect on technology transfer. In Singapore, some faculty members do work with companies, but this practice is not common in either South Korea or Taiwan except in the framework of specific government projects.

Universities have introduced technology transfer offices (e.g. University of Leiden in the Netherlands). These usually have dual functions: providing advice on patents and licenses, and acting as agents. It is felt that they provide a useful advisory function, but do not have the experience or resources to be successful marketing organizations.

Research round tables (U.K.) are periodic, open discussions between scientists and industrialists on specific research topics. Given the relatively weak science base in Asia, fellowships and visiting appointments play an important role in technology transfer. For example: Taiwan sends both young and established investigators to the United States for research and training and also brings researchers to Taiwan from abroad.

Administrative measures are simple, relatively inexpensive, and targeted towards individuals. They do serve to foster university-industry interactions.

4. Corporate Mechanisms

The establishment of new biotechnology companies is the most glamorous form of technology transfer, but is also expensive, complex, and very risky. The dilemma in Europe and Asia is whether to leave this to the private sector or to have direct government involvement. The U.K. government has had the principal role in establishing several new biotechnology companies (e.g. Amersham, Celltech and Agricultural Genetics Co.) in partnership with private investors. These new firms had, at the outset, access to the research from government-funded laboratories. As these firms became fully established, the government divested itself of its holdings. The Taiwan government has been a major partner in the establishment of Lifeguard Pharmaceutical and General Biologicals Corp., two new biotechnology companies spun off from the government supported Development Center for Biotechnology. In contrast, the Singapore government has not been directly involved in the four new biotechnology companies created there, but has provided a package of financial and tax incentives for new high technology companies.

The British Technology Group is a public corporation that initially had rights of first refusal to all government-funded research. It functions as an agent, provides funds for joint ventures, and is a source of venture capital. In general, European governments have preferred to provide indirect support through loans and grants. Direct government support allows new companies to survive. However, their commercial success depends on a combination of technical expertise and sound business management plus compatible and wealthy large partners for

production and marketing. There is little evidence that direct government involvement is more effective than indirect support in increasing the chances of success for new start-ups.

A variation on this theme is the effort of certain European and Asian countries to attract new U.S. biotechnology companies. If indigenous scientists are unwilling to establish new companies, the next best thing is to recruit foreign companies. The Netherlands now has five U.S. biotechnology companies. The U.K. has pursued a similar policy and a number of U.S.-U.K. joint ventures now exist. Of the four new Singaporean biotechnology companies, three are joint ventures with U.S. companies.

Alternatively, two large Korean conglomerates, Samsung and Lucky, have established new biotechnology companies (Eugenetech and Lucky Biotech) in the United States. These offspring carry out contract R&D for the parent organizations and provide a window on developments in U.S. biotechnology.

5. Transnational R&D

For large multinationals, transnational R&D is the fastest and probably the most effective form of technology transfer. There are seven major types of biotechnology contracts between foreign and U.S. companies: 1) acquisition, 2) venture capital/equity, 3) contract R&D, 4) joint R&D, 5) license/production, 6) license/distribution/marketing, and 7) joint production/marketing/distribution or establishment of a new Since the mechanisms for technology transfer in their own countries have been slow, and in many cases unproven, corporations have used their extensive financial resources to enter into agreements with U.S. companies (particularly the small, new ones). numbers of such contracts has increased steadily in the period from 1981-1986 (Table 2). Many of them included more than one type of agreement (e.g. a contract can cover agreements on both joint R&D license/production). Japan is far ahead with a total of 141 contracts followed by the U.K. (35), West Germany (31), Switzerland (26), France (21) and Sweden (19). The total number of contracts for Western Europe is 173. The most common agreements with both Western Europe and Japan. are licenses for production and distribution/marketing. For the period under study, the significant difference between Europe and Japan is that the Japanese were not involved in acquisitions until 1986 while the Europeans started in 1981. The Japanese have made more use of contract R&D reaching a peak of 11 contracts in 1982, and then dropping to 3 in 1985. This probably reflects the stronger science base in Europe at the beginning of this period while the shift to joint R&D is probably an indicator of increased research capabilities. Our studies have shown very limited contract activity between companies in the Pacific Rim and U.S. companies. It is likely that there is a larger number of agreements with Japanese companies.

In addition, European multinationals have increased their funding of R&D in the United States. As the competition for biotechnology products increases, many of the foreign multinationals have expanded their production and business operations in the United States which is

TABLE 2
INTERNATIONAL BIÖTEGHNÖLOGY AGREEMENTS
1981-1st Quarter of 1986

		ema Luid		/				State of the state	STORES.
			/			15	Sector Const	State Ares	State of Sta
		15	Series of	8		A STANDARD CONTRACTOR	- Sign	Ser Se Se	100
	/	San Strike	63.5	Sec. as 1	Street J	grad.	Start S	derig!	31R
yelm ni	/ *	120	9/3		/		1.	18	10
Belgium	1	1	1	3		1	2	9	9
Denmark		1	2	2	1	1	1	8	7
Finland			1		1	3		5	3
France	4	1	6	3	4	6	5	29	21
Germany	1	1	7	6	14	18	3	50	31
Italy	t pie	3	1	3	2	1	1	11	10
Netherlands	2	3		2		2	1	10	,
Norway	174	1				1		1	1
Spain	Mr.	1	-44	1	100	Marina I	1 1	3	2
Sweden	3	3	5	4	5	6	3	29	19
Switzerland	1	2	11	4	5	6	5	34	26
U.K.	4	11		5	4	5	5	38	35
Salite Day	w. lee	2702 0	n-Jugi	10.02				la I	14.00
Total Europe	16	28	38	33_	36	49	27	227	173
MA TOTAL	America)	I march	prime	China	of puly	WELL	ŞIÎ I	our ze	
Japan	2	24	30	24	40	59	24	203	141

Note: This table is based on data compiled by Rachel Schiller, Office of Basic Industries, International Trade Administration, U.S. Department of Commerce.

^{*}Some contracts may involve more than one type of agreement.

frequently their largest single market. Traditionally, while multinational corporations have had their manufacturing and business operations all over the world, they have tended to retain their R&D operations in their home Country. Now, in addition to their contracts with U.S. companies, there is every indication that R&D activities will also be located in the most advantageous environment. The United States provides one of the most appealing locations because of the size and quality of its research establishment as well as its pool of scientific Table 3 shows a number of instances of R&D funding in the manpower. United States by European companies. This can take a number of different forms: funding of university departments/institutes (e.g. Hoechst). establishment of private research institutes (e.g. Roche) and acquisition of a company with its own research institute (e.g.AKZO). Frequently the company gains access to basic research unavailable in its home country (e.g. Hoechst, AKZO) or increases the R&D capabilities in its major market (e.g. Alfa Laval).

Though almost all governments studied have placed a major emphasis on technology transfer, there is seldom a clear-cut definition of its objectives, nor milestones to measure its progress. Furthermore, in most cases, there is no mechanism for evaluating technology transfer.

II . BIOTECHNOLOGY CENTERS

During the past few years, a number of states have established biotechnology programs and centers. Their stated purpose is to promote the development of biotechnology-related industries in those states. In addition, the National Science Foundation has a program for Centers of Excellence some of which are in the biological area. It would therefore be useful to examine in some detail the experience with such Centers in Western Europe and Asia.

Table 4 lists some of the major biotechnology centers that are involved in technology transfer. All of these centers are national and with the exception of the ATV in Denmark they are funded in large part by the national government. The scope of such activities ranges from large networks such as those in France and the Netherlands to single centers such as those in Spain, South Korea and Taiwan. Their principal function is R&D and any educational component is a relatively small part of their More often than not, their priorities are set within the activities. context of national science policy (many of them are part of a National Biotechnology Program). Their budgets include government funds, contracts from other government agencies and private industry. The size of most of these centers is quite large with budgets ranging from \$3.5 million to almost \$16 million and staffs of 200-400. Even though technology transfer is of paramount importance to industry, the fact remains that none of these centers could survive on the basis of funding from the private sector. Therefore, technology transfer is perceived as an extension of government responsibilities for basic research and education.

The Genetic Engineering Research Center (South Korea) and the Development Center for Biotechnology (Taiwan) were created for the

TABLE B FUNDING OF RAD IN THE U.S. BY EUROPEAN COMPANIES

European Company	U.S. Institution	Funding Mechanism	Cost	R&D Area
Hoechst (FRG) 1981	Massachusetts General Hospital	Research grant to Dept. of Genetics	\$50M/10 yrs	Plant molecular biology
Alfa-Laval (Sweden) 1985	Massachusetts Institute of Technology (MIT)	Equipment of Dept. of Biochemical Engineering	HTS	Fermentation & downstream processing
FIDIA (Italy) 1985	Georgetown University	Funding of new research institute	\$3M/yr for twenty years	Neurophysiology
Roche (Switzerland) 1969	Institute of Molecular Biology	Funding of industrial research institute	\$15H/yr	Molecular & cell biology
Glaxo (U.K.) 1986	Glaxo Research Institute	Funding of industrial research institute	нез	Pharmaceutical .
AKZO (Netherlands) 1985	Litton Institute of Advanced Biotechnology	Acquisition of industrial research institute	H6ST	Cancer diagnosis & therapy

NATIONAL ABLE OLOGY TRANSFER ORGANIZATIONS

COUNTRY	INSTITUTIONS	STRUCTURE	ANNUAL BUDGET	STAFF
France	. Univ. of Complegne . Pasteur Institute . National Inst. of Agronomy . Univ. of Aix . Univ. & Inst. of Applied Sciences of Toulouse	Government laboratories attached to existing universities or institutes	NA	NA
Netherlands	TNO (35 institutes; 7 in biotechnology)	Network of government institutes doing applied R&D	\$60m	5000
Denmark	ATV (19 institutes; 3 in biotechnology)	Network of applied R&D institutes funded by private industry	\$42.5m	1250
Germany	GBF	National biotechnology research center	\$15.6m	390
Spain	Centro Nacional de Biotechnologia	National biotechnology research center	\$5.3m projected	300
Sweden	Huddinge Center for Biotechnology	Center funded by county & national governments	planned	
Korea	Genetic Engineering Research Center (KAIST)	Autonomous research center mostly funded by government	\$3.5m	170
Taiwan	Development Center for Biotechnology	Autonomous research center funded by government and government owned companies	\$7m	103

explicit purpose of technology transfer. They receive contracts from private industry and are also involved in joint projects with companies. However, technology transfer in the absence of a strong indigenous research base is a daunting task. Therefore, both institutions have the added responsibility of introducing new research procedures and technologies into their respective countries and disseminating them to other laboratories.

The situation in the U.K. is probably more relevant to an American audience since it is decentralized and much less linked to national policy and industrial planning. These biotechnology centers are usually associated with universities and are on a much smaller scale than those mentioned above. For example, the Biotechnology Center at Imperial College (London) has an operating budget of approximately \$500,000 and a staff of 50; the Leicester Biocenter (in partnership with five companies) has a budget of \$500,000 and a staff of 30; and the Cambridge Biocenter has a budget of about \$1.3 million and a staff of 31. Most of these were started with local initiative and funds from the university plus support from the University Grants Committee and other government agencies. They focused their activities on those research areas in which they were traditionally strong.

Table 5 summarizes the major policy issues which all of these biotechnology centers have to deal with.

- 1. <u>Institutional autonomy</u>: scientific and administrative flexibility are important in technology transfer. Therefore, it would be preferable that biotechnology centers are not part of a large bureacracy whether that is a government ministry or a large university system.
- 2. Relationship to universities: being part of a university provides a better interphase with basic research, gives access to skilled manpower and provides the opportunity to upgrade university curriculums. On the other hand, there are those who feel that university activities provide a distraction from the more industry-related activities of a technology transfer center, and might siphon off badly needed resources.
- 3. Nature of industrial involvement: the objectives of the centers do not always coincide with those of industry since they would emphasize long-term mechanisms such as joint projects and partnerships while industry prefers the cost advantages and flexibility of shorter term grants and contracts.
- 4. Scientific focus: one of the most controversial issues is whether the priorities of the scientific program should be set by the government, the center or industry. If the industrial clients play the most important role, then there is always the risk that the center becomes an organization for contract R&D.
- 5. Relationship to economic development programs: the technology transfer activities should be related to economic development goals since new products and processes have to find industrial users and markets. However, new technologies and established industries do not always make for an easy mix, and the outcome is dependent on the goals of development programs (save jobs now vs create companies tomorrow).
- 6. Networks and information transfer: one of the most important functions that can be served by a biotechnology center is to be an information center and to promote the rapid dissemination of new research findings and applications:

TABLE 5

KEY FACTORS IN TECHNOLOGY TRANSFER ORGANIZATIONS

- 1. INSTITUTIONAL AUTONOMY.
- 2. RELATIONSHIP TO UNIVERSITIES.
- 3. NATURE OF INDUSTRIAL INVOLVEMENT.
 - A) GRANTS AND CONTRACTS
 - B) JOINT PROJECTS
 - C) SPONSORSHIP
- 4. SCIENTIFIC FOCUS
- 5. RELATIONSHIP TO ECONOMIC DEVELOPMENT PROGRAMS
- 6. NETWORKS AND INFORMATION TRANSFER
- 7. INTERNATIONAL AGREEMENTS

TABLE 6

CHALLENGES FOR U.S. BIOTECHNOLOGY CENTERS

- 1. NEW ORGANIZATIONAL STRUCTURES.
- COLLABORATION BETWEEN CENTERS.
- 3. EFFECTIVE RELATIONSHIP WITH STATE ECONOMIC DEVELOPMENT PROGRAMS AND LOCAL INDUSTRY.
- 4. COLLABORATION WITH FOREIGN RESEARCH CENTERS AND UNIVERSITIES.
- 5. TECHNOLOGY TRANSFER ON A GLOBAL SCALE.
- 6. DEVELOPMENT OF INNOVATIVE TRAINING PROGRAMS.

programs.

For too long the United States has relied on one principal mechanism of technology transfer, the creation of new companies. It is evident that this is no longer sufficient to meet all of our needs, and that new mechanisms need to be developed. This is an exciting challenge and one which will profit from careful study of that which is happening all over the United States and all over the world.

DR. ROBERT YUAN
Professor, Department of Microbiology
University of Maryland
College Park, MD

Dr. Robert Yuan is a molecular biologist and is currently professor of Microbiology at the University of Maryland at College Park. He has done research and taught at Harvard University, the University of Edinburgh (Scotland) and at the Biozentrum of the University of Basel (Switzerland). In addition, he has been a section head at the NCI-Frederick Cancer Research Facility. Dr. Yuan was on temporary assignment to the U.S. International Trade Administration for a period of two years. He was stationed during 1985-86 at the U.S. Embassy in London in order to carry out a technical and industrial assessment of biotechnology in Western Europe. He has recently published "Biotechnology in Western Europe." Dr. Yuan is currently Senior Advisor in Biotechnology to the U.S. Department of Commerce and has just completed a second study on biotechnology in Singapore, South Korea and Taiwan. He is presently writing a book on this topic.

BIOTECHNOLOGY IN WESTERN EUROPE AND THE PACIFIC RIM

Author:Dr.Robert Yuan,
Professor of Microbiology,
University of Maryland, College Park;
Senior Adviser in Biotechnology to the
U.S. Department of Commerce
U.S.A.

Summary: Technical and industrial assessments of biotechnology have been carried out in eleven countries in Western Europe (Denmark, Finland, France, West Germany, Italy, Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom) and three countries in Asia (Singapore, South Korea and Taiwan). In addition, some of the political factors that affect biotechnology in Western Europe have been examined. A new trade initiative for biotechnology in the Pacific Rim is discussed.

The Biotechnology Program of the U.S. International Trade Administration is carrying out a series of studies on biotechnology worldwide. These include studies on Western Europe, Japan and the Pacific Rim. The principal objectives were to:

- 1. determine the government policies in support of biotechnology,
- identify the principal research laboratories and their activities.
- 3. identify the principal companies involved in biotechnology and their activities, and
- 4. study the various mechanisms for technology transfer from the research laboratories to the industrial sector.

In addition, a recent study has analyzed the political factors that are likely to affect the development of biotechnology in Western Europe.

The results of our European study have been published and been widely disseminated, so I will not dwell on them at this time. I would rather discuss a recent analysis of biotechnology in Singapore, South Korea and Taiwan, and a new initiative for collaboration between the Trade Development Program and a number of state economic development agencies.

Biotechnology in the Pacific Rim

The growth of biotechnology in the newly industrializing countries of Singapore, South Kores and Taiwan coincides with government policies directed towards restructuring the economy away from labor-intensive manufacturing and towards high technology sectors. All of these countries have dynamic economies with annual growth rates of 8-9%. They have a common Confucian tradition, and a strong regard for education, hard work and frugality. The United States has negative trade balances with all three ranging from \$838 million for Singapore to \$13.6 billion for Taiwan (in 1986). The per capita GNP varies considerably with Singapore's \$6519 being the second highest in Asia after Japan while South Korea's \$2296 makes it the least affluent of the One of the remarkable achievements of these rapidly expanding economies has been a fairly broad distribution of wealth.

I. Government Policy

Government policy is the single most important element in the development of biotechnology. In all three countries, the government is involved in biotechnology at all levels starting with basic research and extending to financial support for industrial development. In this respect, the role of the government closely follows the patterns of Japan and numerous European countries. Though the government represents a major source of research funding, the amounts involved are small when compared to the United States, and some of the major European countries. The budgets of \$10 million reported for South Korea

and Taiwan are small when compared to the \$4.3 billion reported for the United States or the \$180 million for Japan. Though basic research is carried out at university laboratories, government policy has focused on the establishment and operation of national research institutes. A significant proportion of the government funds has been invested on technology transfer institutes in South Korea and Taiwan.

Biotechnology has been chosen as one of the priority areas for industrial development. Both South Korea and Taiwan have National Programs of Biotechnology. In all cases, biotechnology's special status has led to additional R&D funding and financing of new products and processes. Health care in general, and the hepatitis problem in particular have been chosen for early application of biotechnology. Singapore government policy is strongly market oriented, but the development of a hepatitis vaccine and a number of diagnostic tests for AIDS and hepatitis has been actively encouraged. South Korea has established a New Drug Association (a partnership between the government and drug companies) while the Taiwan government has a National Hepatitis Program. The emphasis on hepatitis is not only an attempt to find a solution to a serious public health problem, but also serves an important function in establishing a political consensus in support of biotechnology and in aducating the national leadership on its industrial and commercial applications.

The governments provide powerful incentives for R&D and the introduction of new technologies including biotechnology. Both Singapors and Taiwan have more comprehensive programs for high technology than South Korea. While the Singapore government does not take a major role in the financing of new companies (unlike Taiwan), it does have the unusual INIT program for upgrading the skills of its workers. In South Korea, the government has a close partnership with the chaebols (industrial conglomerates) that encourages the targeting of new industries.

The lack of strong intellectual property laws and of comprehensive rules for approval and registration of new drugs as well as new rDNA products have been major obstacles to the development of biotechnology. The long history of patent infringements, product copying, protection of domestic manufacturers, has been a major inhibitor of transfer of new technologies to these countries. Singapore has a Western-style patent system that follows British law while both South Korea and Taiwan have introduced new patent regulations, but their impact remains to be seen.

II. Science Base

The basic research establishment in Singapore, South Korea and Taiwan is weak. Of the three, Taiwan has the strongest science base in the biological sciences. The governments' efforts to build up basic research is primarily directed towards the creation of new research centers. New government funding has led

to the creation of the Institute of Molecular and Cell Biology in Singapore, the Central Laboratory of Molecular Biology, the Institute of Biomedical Sciences and the Development Center for Biotechnology in Taiwan, and the Genetic Engineering Center and the Institute of Molecular Biology and Genetics in South Korea.

The major limiting factor in the development of both R&D and industry in the biotechnology sector is a shortage of professional manpower. Of the three countries visited, Singapore has the most visible shortage of biological scientists while Taiwan is in the strongest position. The most rapid solution to this problem is the active recruitment of expatriate scientists (primarily resident in the United States). Taiwan has a large pool of scientists in the United States while Singapoe has used a policy of high salaries and excellent working conditions to try to create an international scientific establishment. If the problem is already serious at the scientific level, it becomes severely limiting at the level of management/administration due to a lack of senior scientists with broad experience.

III. Industrial Base

The biotechnology industry is in its infancy in these countries. Both Singapore and Taiwan are committed to the creation of new biotechnology companies while South Korea is likely to see new industrial activities associated with its large conglomerates. While the governments encourage the activities of the multinational companies as a source of employment and tax revenue, they accept the fact that such large corporations will not introduce new technologies and products. Therefore, one of the primary roles of the government is to promote new companies. There are three different models: 1) closely associated with government institutions (Taiwan); 2) part of large industrial conglomerates (South Korea), and 3) new private companies frequently as joint ventures with U.S. companies (Singapore).

The pharmaceutical market is commercially important, but the domestic pharmaceutical industry is highly fragmented in South Korea and Taiwan, and small in Singapore. The markets are lucrative and the few new industrial activities in biotechnology are heavily oriented towards human health care. The other two important industrial sectors are agriculture/food processing and specialty chemicals, but with the exception of Plantek and Everbloom in Singapore, efforts in these directions have been limited.

All of these countries have an active entrepreneurial environment particularly Singapore and Taiwan. Investment capital is plentiful, but there is little experience with R&D companies and there is a generally conservative attitude towards funding new companies without clearly defined products. Financial organizations associated with the government therefore play a major role in the funding of new high technology companies. Profits from export sales and funds from overseas Chinese

represent large pools of domestic capital.

The single most important problem in industrial development of biotechnology is the recruitment of an integrated team of scientists, managers, and marketing specialists.

IV. Technology Transfer

The principal mechanism for technology transfer is licensing from foreign companies. However, the move into high technology industries and the highly competitive nature of such markets has led to a search for new ways of introducing new technologies. Singapore has used its free market environment to encourage the creation of new companies in collaboration with foreign companies. It has made effective use of its grant system for retraining its workers. At the government level, South Korea has established the Genetic Engineering Center as a technology transfer institution and organized the Korea Genetic Engineering Research Association (a partnership between the government and private companies). At the private level, Samsung and Lucky have established genetic engineering companies in the United States in order to carry out research and act as a window on developments in U.S. biotechnology. The Taiwan government has established the Development Center for Biotechnology as a center for technology transfer and for the spinning off of new companies. To date, none of these countries have scored any major successes.

The Political Environment in Western Europe

The regulation of new biotechnology products and processes in Western Europe is a patchwork of national laws and requirements ranging from the permissive to the restrictive. None of the countries except Denmark have specific legislation for biotechnology products, but make use of existing statutes. Three of the twelve require mandatory registration of rDNA experiments while Denmark requires registration of all biotechnology work. In general, the regulatory framework for biotechnology in Western Europe is both reasonable and workable. There is however an element of political volatility both in national legislatures and public opinion that could lead to changes in the existing regulations.

There is serious concern in industry that the lack of common regulations will unduly delay the development of biotechnology in Western Europe. It had been hoped that the creation of an EEC regulatory system would preempt national biotechnology regulations and avoid the slow, painful process of harmonization. The passage of new regulations by Denmark and the possible introduction of similar legislation in the FRG makes it now unlikely that the EEC regulatory system can be put in place before national systems.

The majority of the European governments (seven of twelve with a possible eighth) are under the control of conservative

parties. There are five conservative-led coalitions in power, three of which are minority governments. The major European Socialist parties are Social Democrats in all but name, and have become among the strongest advocates for R&D, industrial development, privatization of state industries, and creation of new entrepreneurial high technology companies. They have also been the architects of many of the national biotechnology programs.

The Green parties have been among the most vociferous opponents to biotechnology, but their influence has been less through the electoral process than through the leveraging of weak minority governments and/or providing for alternative politics. The Greens are less likely to have a decisive influence if there is a consensus for the orderly development of biotechnology among academics, government officials, and industrial managers. This consensus is most effective when it is transparent to the public.

The Pacific Rim: An Opportunity for U.S. Biotechnology

Though the Biotechnology Program in collaboration with the U.S. Embassies overseas have been successful in obtaining valuable information about the biotechnology activities of our competitors, this information has not been translated into new opportunities for U.S. industry. Several major problems have been identified:

- 1. The lack of stable funding for the assessment projects and administrative delays in carrying out specific studies;
- 2. the lack of effective mechanisms to make the information available to U.S. companies, and
- 3. the absence of any follow-up activities by U.S. companies overseas.

It is in order to make the most effective use of the information that the International Trade Administration and the Trade Development Program have organized a conference on Biotechnology in the Pacific Rim which will bring together key leaders in government, research, and industry from the U.S., Singapore, South Korea and Taiwan. At the same time, we have begun to establish close ties to state economic development agencies in order to identify appropriate mechanisms to increase the activities of U.S. companies in that potentially rich market. In the long term, it is hoped that this partnership between ITA, TDP and the states will lead to:

- 1. Continuous technical and industrial assessment of biotechnology in both Western Europe and the Far East;
- 2. market analyses for new biotechnology products;
- 3. identification of appropriate foreign partners for joint ventures, and
- 4. the development of cooperative R&D between the U.S. and foreign institutions.

Government Publications

Advance Product Information from the U.S. Government Printing Office

87-SM-64

IMMEDIATE RELEASE
For information: Ms. Emily Arakaki,
Department of Commerce (202) 377-3888
To purchase: Order Desk (202) 783-3238

REPORT PROVIDES AN ASSESSMENT OF BIOTECHNOLOGY IN WESTERN EUROPEAN COUNTRIES

The International Trade Administration has released a report that presents a technical and industrial assessment of biotechnology in the major nations of Western Europe. Biotechnology in Western Europe includes country reports which describe the national environment for biotechnology in eleven European nations.

The country reports focus on the general characteristics of each country, including government policy, scientific and industrial bases, and technology transfer. The report also discusses three international biotechnology programs directed towards increasing collaboration across national borders. The European Molecular Biology Organization (EMBO) program focuses on basic research, scientific exchange, and training as a means of creating a favorable environment for the development of biotechnology, the European Economic Community (EEC) program is concerned with building up the European Western scientific infrastructure, and the EUREKA program stresses the establishment of industrial projects between companies and organization in the various European countries.

The report also includes numerous tables and charts, a glossary of terms, and references for further reading.

The authoritative 276-page publication, <u>Biotechnology in Western Europe</u>, stock number 003-009-00509-4, is available for \$ 13.00. Send prepayment to Dept. 36-XG, Superintendent of Documents, Washington, DC 20402-9325; or to order with Visa or MasterCard phone (202) 783-3238.

Seattle Detroit Cleveland Philadelphia Chicago Pittsburgh Columbus Columbus

Dallas .

Houston

Your Government Bookstores

GPO operates 24 bookstores all around the country where you can browse through the shelves and take your books home with you. Naturally, these stores can't stock all of the more than 16,000 titles in our inventory, but they do carry the ones you're most likely to be looking for. And they'll be happy to special order any Government book currently offered for sale. All of our bookstores accept VISA, Choice, MasterCard, and Superintendent of Documents deposit account orders.

ALABAMA O'Neill Building 2021 Third Ave., North Birmingham, Alabama 35203 (205) 731-1056 9:00 AM-5:00 PM

San Francisco

Los Angeles

CALIFORNIA
ARCO Piaza, C-Level
505 South Flower Street
Los Angeles, California 90071
(213) 894-5841
8.30 AM-30 PM

Room 1023, Federal Building 450 Golden Gate Avenue San Francisco, California 94102 (415) 556-0643 8:00 AM-4:00 PM

COLORADO
Room 117, Federal Building
1961 Stout Street
Denver, Colorado 80294
(303) 844-3964
8:00 AM-4:00 PM

World Savings Building 720 North Main Street Pueblo, Colorado 81003 (303) 544-3142 9:00 AM-5:00 PM DISTRICT OF COLUMBIA
U.S. Government Printing Office
710 North Capitol Street
Washington, DC 20401
(202) 275-2091
8:00 AM-4:00 PM

Pueblo .

Commerce Department
Room 1604, 1st Floor
14th & Penn., NW, South Side
Washington, DC 20230
(202) 377-3527
8:00 AM-4:00 PM

Farragut West 1510 H Street, NW Washington, DC 20005 (202) 653-5075 9:00 AM-5:00 PM

FLORIDA Room 158, Federal Building 400 W. Bay Street Jacksonville, Florida 32202 (904) 791-3801 8:00 AM-4:00 PM

GEORGIA Room 100. Federal Building 275 Peachtree Street, NE P.O. Box 56445 Atlanta, Georgia 30343 (404) 331-6947 8:00 AM→ 00 PM ILLINOIS
Room 1365, Federal Building
219 S. Dearborn Street
Chicago, Illinois 60604
(312) 353-5133
8:00 AM-00 PM

Birmingham

MASSACHUSETTS
Room G25, Federal Building
Sudbury Street
Boston, Massachusetts 02203
(617) 565-2488
8:00 AM-4:00 PM

MICHIGAN
Suite 160, Federal Building
477 Michigan Avenue
Detroit, Michigan 48226
(313) 226-7816
8:00 AM-4:00 PM

MISSOURI 120 Bannister Mall 5600 E. Bannister Road Kansas City, Missouri 64137 (816) 765-2256 Mon-Sat 10:00 AM-9:30 PM Sun 12:00 Noon-6:00 PM

NEW YORK Room 110 26 Federal Plaza New York, New York 10278 (212) 264-3825 8:00 AM-4:00 PM

OHIO 1st Floor, Federal Building 1240 E. 9th Street Cleveland, Ohio 44199 (216) 522-4922 9:00 AM-5:00 PM

Room 207, Federal Building 200 N. High Street Columbus, Ohio 43215 (614) 469-6956 9:00 AM-5:00 PM PENNSYLVANIA Robert Morris Building 100 North 17th Street Philadelphia, Pennsylvania 19103 (215) 597-0677 8:00 AM-4:00 PM

facksonville

Room 118, Federal Building 1000 Liberty Avenue Pittsburgh, Pennsylvania 15222 (412) 644-2721 8:30 AM-4:30 PM

TEXAS
Room 1C46, Federal Building
1100 Commerce Street
Dallas, Texas 75242
(214) 767-0076
7:45 AM-4:15 PM

9319 Gulf Freeway Houston, Texas 77017 (713) 229-3515 Mon-Sat 10:00 AM-6:00 PM

WASHINGTON
Room 194, Federal Building
915 Second Avenue
Seattle, Washington 98174
(206) 442-4270
8:00 AM-4:00 PM

WISCONSIN Room 190, Federal Building 517 E. Wisconsin Avenue Milwaukee, Wisconsin 53202 (414) 291-1304 8:00 AM-4:00 PM

RETAIL SALES OUTLET 8660 Cherry Lane Laurel, Maryland 20707 (301) 953-7974 792-0262 7:45 AM-3:45 PM

BIOTECHNOLOGY IN SINGAPORE, SOUTH KOREA AND TAIWAN

This is the first comprehensive study of biotechnology in the newly industrializing countries of Singapore, South Korea and Taiwan. Until recently these countries have been mainly known for their highly efficient manufacturing industries, but have now begun to make their first tentative moves into high technology. Biotechnology is considered by all of them to be an industrial technology of the highest priority.

The author of this 108-page report, Dr. Robert Yuan, was also responsible for a recent study on biotechnology in Western Europe. Drawing on his European experience, he has focused on four major topics:

- 1. government policy for the promotion of biotechnology;
- 2. the principal research organizations and their activities;
- 3. the principal companies with biotechnology activities; and
- 4. the mechanisms of technology transfer.

In addition, he has also looked into issues that have been major sources of friction between the United States and its Asian trading partners. These issues include protection of intellectual property, protection of domestic industries, regulation of foreign investment, and repatriation of profits. Much of the data is summarized in easy to read tables and figures. The information was obtained primarily during travel to these countries, and many of the documents were translated directly from Chinese or Korean.

Though all of these three countries share a common heritage, they differ sharply in their philosophies of economic development and their cultural environment. The author has endeavored to provide a sense of the environment for biotechnology in each of these countries and of the opportunities for collaboration in R&D and in the development of new markets and industrial joint ventures.

Biotechnology in Singapore, South Korea and Taiwan is available from the National Technical Information Service in Springfield, VA. To order a copy, contact the Sales Office at (703) 487-4650. The price per copy is \$19.95 and the stock number is PB 88172440.

NGA Committee on Economic Development and Technological Innovation

(Handouts)

Dick Geltman Staff Director

john H. Sununu Governor of New Hampsh re Chairman

Raymond C. Scheppach Executive Director

NGA Activities in Science and Technology

April, 1988

Projects Completed or in Progress

- 1. Report on State-Supported Small Business Innovation Research Programs and Related State Technology Programs
- 2. Survey on the Structure and Function of State Science and Technology Offices
- 3. Publication of <u>Shifting Responsibilities: Federalism in Economic Development</u>

Ongoing Issues and Potential Projects

- 4. State Government Strategies for Self-Assessment of Science and Technology Programs for Economic Development
- 5. Clearinghouse on State and Federal Science and Technology Initiatives
- 6. Science and Mathematics Education proposal
- 7. Conference on Operating a Competitive Research Grant Program
- 8. Update of Revitalizing State Economies
- 9. Examination of State Programs to Encourage Commercialization
- 10. State/Local Relationships in Technology Development

National Governors' Association

John H. Sununu Governor of New Hampshire Chairman

Raymond C. Scheppach Executive Director

TECHNOLOGICAL INNOVATION

The United States has long led the world in technological innovation, a major source of our economic strength. Now, however, our nation faces a serious challenge to continued leadership in this area. At home, our technologies have matured and the pace of new technological development has slowed; at the same time, much of our infrastructure and industrial plant equipment is aging. Abroad there is increased competition from emerging as well as established industrialized countries. The industrial nations face unprecedented energy and resource constraints combined with growing geopolitical pressures.

To help address these problems, state and national policy initiatives are needed to promote technological innovation and industrial competitiveness. Perhaps the most important goal of these policies should be to maximize our human potential for technological innovation. To achieve this, our educational system must give new emphasis to training technical personnel and ensure that graduates have received appropriate training for available jobs, while having the flexibility to adapt to new technologies. We must demand increased exposure and substantially higher levels of achievement in math, science, engineering, and computer learning in our schools and universities for all students. In focusing attention on these disciplines, we must not neglect the humanistic education necessary to protect our national values.

A well-trained and educated workforce can make a vital contribution to technological innovation and economic growth. We must develop policies to encourage workers' contributions to technological innovation, while minimizing potential hazards to health and threats to personal economic security. Training and retraining programs must be available for unemployed and displaced workers.

The participation of universities in developing the fundamental research that is the knowledge base for technological innovation is as important as their role in education and training. Public and private research is an important prerequisite for future growth and improvement in the quality of life. Universities should be assisted and encouraged to more closely link their research and development efforts with technological innovation that contributes to economic progress. The traditional intellectual purity of the university, however, must not be compromised.

Policies affecting financial capital like those affecting human capital must be targeted toward encouraging technological innovation. Capital is needed to finance research and development and to introduce new and advanced technologies in new establishments and mature enterprises. We must promote policies that will encourage markets to direct funds to investments that advance technological innovation. The ability of business executives and entrepreneurs to undertake long-term planning, take risks, and innovate is crucial to economic success. Therefore, we must create an environment in which business decisions and investment aimed at long-term productivity gains and real growth through technological innovation are the norm.

States have taken vanguard initiatives in the task of recharging our economy. However, this task can most effectively be accomplished by state government in partnership with federal and local government, business, labor, and academia. Wherever desirable and feasible, these groups should cooperate in developing and implementing the programs necessary to promote technological innovation.

As a national competitiveness policy is developed, the federal government should acknowledge the role of states in serving as effective intermediaries between universities, government, and industry. By investing significant resources in technology research and education, states have been successful in creating new jobs and promoting economic development to improve their competitiveness in the world economy. Too often states and the federal government pursue independent technology development initiatives lacking the coordination, cooperation, and cohesiveness necessary for the U.S. to compete effectively. There is a demand for cooperative mechanisms to bring the resources of state and federal governments, research universities, and industry together. Federal and state governments should develop an effective partnership between federal competitiveness programs and state applied research initiatives.

Federally funded research and development must be regarded as a long-term investment in the nation's economic well-being through the direct and indirect fostering of technological innovation for economic development. This investment is also important when considering the potential of advances in science and engineering for achieving greater efficiency and effectiveness in state and local government. Increasingly, it has been demonstrated that a wide range of problems can be solved and that program costs can be reduced without reduction in the quality of public services. To achieve a greater return for state governments and their citizens, a stronger link between state and local needs and the federal science and technology establishment must be forged and maintained.

Federal Actions Suggested

- The federal government should give increased priority to support for civilian sector basic and applied research in the overall federal research and development budget in ways designed to strengthen and stimulate the U.S. economy. States should play an important role in setting federal civilian research priorities. A productive mechanism for federal support of civilian research and development lies in joining with states to support university/industry research partnerships and consortia.
- Congress should continue to improve the federal tax climate for innovation through judicious use of incentives designed to promote corporate research and development, capital investment in production facilities, business expansion, and formation of new ventures.

- Congress should ensure the continuity of existing grant programs such as Urban Development Action Grant and Community Development Block Grant programs and amend them to allow greater flexibility for their use by states in developing state and local technological infrastructure, providing support for new and advanced technology-based businesses, and encouraging the formation of new and advanced technology ventures.
- Congress should repeal the 1993 "sunset" provision of the Small Business Innovation Research (SBIR) program making the program permanent. The SBIR program has proven to be a strong and effective means of fostering the role of small business in federal research and development, spurring economic development within the states. Federal agencies should facilitate states' assistance to SBIR applicants. To achieve the goals of the SBIR program, this would include funded and unfunded SBIR applicants.
- The federal government should work diligently to further enhance the role of the federal research and development agencies and laboratories in economic development. Where feasible, avenues for the utilization of federal research and development agency and laboratory technology for technological innovation by the private sector and by state and local government should be provided through regional programs. Participation of federal research and development agencies and laboratories with universities and industry in cooperative civilian research should be encouraged.
- The federal government should give priority to the support of university programs designed to train the scientific and engineering personnel essential to continued economic growth. Federal programs should augment and complement state and local government programs. The federal government should make substantially greater investments in our nation's research infrastructure. Federal policies must recognize that the costs of university research facilities and equipment are a necessary part of federally sponsored. university-based research costs. The portion of federal research grants and contracts that reimburse universities for use or depreciation of facilities and equipment should be based on realistic useful lifetimes. To allow universities to restore their infrastructure in a timely fashion, a facilities fund should be established within the National Science Foundation. There should be a greater concentration of investment incentives for industrial participation in the sponsorship of university science and engineering programs.
- The Job Training Partnership Act should be examined with state, labor, and
 private sector input to assess its long-term utility for providing the training
 required in the fields of employment that will be important to the nation as
 the impact of technological innovation is felt.

- The federal government should support state economic development efforts to encourage business export activity in commodities, products, and services based on new and advanced technologies. Federal action is required in concert with state initiatives to: provide assistance for state trade promotion programs, streamline export licensing application processes, provide centralized export technical and marketing assistance, and meet the alternative financing needs of small and medium-sized business.
- Congress should modify existing antitrust statutes to encourage increased joint corporate research and development ventures.
- The formulation of a national competitiveness policy should recognize the leadership of states in technology development and take all steps to coordinate with state programs and encourage interstate and regional cooperation.
- A federal/state matching grant program should be established to support existing state technology programs and encourage the development of new programs in states where they do not exist.
- Potential cooperation and coordination with state programs should be considered prior to funding research centers initiated by the National Science Foundation (NSF), the Department of Defense (DoD), the National Institutes of Health (NIH), and other federal agencies.
- A clearinghouse on state technology development programs should be established with federal support to collect and share information among and between states and with federal agencies, to provide training and technical assistance to better coordinate state and federal efforts, and to assist those states interested in developing such programs.

State Actions Suggested

- States should continue their leadership in promoting economic growth by the
 development of state programs designed to encourage technological innovation
 in new and existing businesses. States are in a more appropriate position than
 the federal government to provide the direct leadership and partnership
 involvement that are necessary for effective programs tailored to their
 individual needs.
- States should, with federal assistance, continue to play the dominant role in improving elementary and secondary education, and in providing essential training and retraining; catalyze university/industry research and technical partnerships; encourage the establishment of new and advanced technology ventures; provide comprehensive technical and managerial assistance to new entrepreneurs: and advanced technology assist new and technology-based businesses as well as traditional businesses in reaching international markets; and aggressively promote the application of advanced technologies in assisting industrial, agricultural, and commercial enterprises to achieve economies and to increase productivity in order to make such enterprises more competitive in domestic and world markets.

LIST OF PARTICIPANTS

Participants List

Fifth Meeting of the NGA Working Group on State Initiatives in Applied Research

Washington, D.C. April 28 - 29, 1988

Mr. David Beightol
Director
State of Wisconsin
Washington Office
444 N. Capitol Street, N.W.
Suite 345
Washington, D.C. 20001

(202) 624-5870

Ms. Zanne Bigley Kinghorn and Associates 1155 15th Street, N.W. Suite 400 Washington, D.C. 20005

(202) 659-1703

Ms. Michele Boisse
Staff Associate
State & Local Government
Affairs
American Chemical Society
1155 16th Street, N.W.
Suite 330
Washington, D.C. 20036

(202) 872-4391

Mr. Paul R. Brockman
Vice President
Industrial & Technology
Development
LFW Management Associates
700 North Fairfax #410
Alexandria, VA 22314

(703) 684-6331

* Dr. Charles Brownstein
Acting Assistant Director
Directorate for Computer and
Information
Science and Engineering
National Science Foundation
1800 G Street, N.W., Room 306
Washington, D.C. 20550

(202) 357-7936

Mr. William G. Brundage
President
Kansas Technology Enterprise
Corporation
400 Southwest 8th Street
5th Floor
Topeka, KS 66603

(913) 296-5272

* Mr. Raymond Bye Director Office of Legislative and Public Affairs National Science Foundation 1800 G Street, N.W. Room 527 Washington, D.C. 20550

(202) 357-9838

Mr. John P. Campbell Senior Program Officer GUIRR National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, D.C. 20418

(202) 334-3486

Dr. Lowell Christy Consultant Institute for Illinois 525 School Street, S.W. Suite 304 Washington, D.C. 20024

(202) 488-3640

Ms. Marianne Clarke Senior Policy Analyst National Governors' Association 444 N. Capitol Street Washington, D.C. 20001

(202) 624-5380

* Mr. Christopher Coburn Science and Technology Advisor Office of the Governor State of Ohio 65 E. State Street Suite 200 Columbus, OH 43266-0330

(614) 466-3086

Dr. John M. Crothers
Director
High Technology Development
Division
Department of Economic and
Community Development
320 6th Avenue North
Rachel Jackson Building
6th Floor
Nashville, TN 37219-5308

(615) 741-5070

Dr. Richard Florida
Assistant Professor
Center for Urban and Public
Affairs
Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-8784

Mr. John J. Forrer
Senior Associate
Coalition of Northeastern
Governors
444 N. Capitol Street, N.W.
Suite 382
Washington, D.C. 20001

(202) 783-6674

Dr. Stephen Gage
Vice President
Indiana Corporation for
Science and Technology
One North Capitol
Suite 925
Indianapolis, IN 46204-2242

(317) 635-3058

Mr. Richard B. Geltman
Staff Director
Committee on Economic
Development and Techological
Innovation
National Governors' Association
444 N. Capitol Street
Suite 250
Washington, D.C. 20001

(202) 624-5311

Mr. Doug Getter
Bureau Chief
Business/Targeted Small
Business Development
Iowa Department of Economic
Development
200 E. Grand Avenue
Des Moines, IA 50309

(515) 281-3036

* Mr. Ray L. Gilbert
Manager, Applications
Engineering
NASA Headquarters
Technology Utilization
Division
600 Independence Avenue, S.W.
Washington, D.C. 20546

(202) 453-8722

Mr. Robert E. Gleeson
Executive Director
Center for Economic Development
Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-6072

Ms. Donna J. Grinstead Federal Coordinator Ohio's Thomas Edison Program 65 E. State Street Suite 200 Columbus, OH 43266-0330

(614) 466-0282

* Ms. Margaret Grucza
Study Director
Government Studies Group
Division of Science Resources
Studies
National Science Foundation
Room L-602
Washington, D.C. 20550

(202) 634-4636

Ms. Joyce Hamaty
State Project Coordinator
Office of Legislative and
Public
Affairs
National Science Foundation
1800 G Street, N.W.
Room 527
Washington, D.C. 20550

(202) 357-9838

Mr. Dewitt John
Senior Economist
National Governors'Association
444 N. Capitol Street, N.W.
Suite 250
Washington, D.C. 20001

(202) 624-5392

* Dr. Donald Johnson Director Industrial Technology Services National Bureau of Standards Administration Building, Room A-1123 Gaithersburg, MD 20899

(202) 975-2122

Mr. John Johnson
Executive Director
Missouri Corporation for
Science and Technology
High Technology Program
P.O. Box 118
Jefferson City, MO 65102

(314) 751-3906

* Mr. H. Graham Jones Executive Director New York State Science and Technology Foundation 99 Washington Avenue Suite 1730 Albany, NY 12210

(518) 474-4348

Ms. Bev Jones
Executive Director
Office of Science and
Technology
900 American Center Building
150 E. Kellogg Boulevard
St. Paul, MN 55101

(612) 297-4368

Ms. Megan Jones
Executive Director
Massachusetts Centers of
Excellence Corporation
One Ashburton Place
Suite 2110
Boston, MA 02108

(617) 727-7430

Mr. Edward T. Kelly
Washington Director
Small Business High Technology
Institute
1233 20th Street, N.W.
Washington, D.C. 20006

(202) 775-8805

* Dr. James Kenworthy
Manager, Research and
Technology Programs
Michigan Strategic Fund
Michigan Department of
Commerce
Law Building, Third Floor
525 West Ottawa
Lansing, MI 48933

(517) 373-7550

Dr. Casey Kiernan
Program Officer
GUIRR
National Academy of Sciences
2101 Constitution Avenue, N.W.
Washington, D.C. 20418

(202) 334-3486

Mr. Jacques Koppel Executive Director Ben Franklin Partnership 464 Forum Building Harrisburg, PA 17120

(717) 787-4147

Mr. Bruce Lang
Executive Director
Rhode Island Partnership for
Science and Technology
7 Jackson Walkway
Providence, RI 02903

(401) 277-2601

* Dr. Alan I. Leshner Director Office of Science and Technology Centers Development National Science Foundation 1818 G Street, N.W. Washington, D.C. 20550

(202) 357-9808

Dr. Don Mathsen Associate Dean School of Engineering and Mines University of North Dakota 213 Harrington Hall University Station P.O. Box 8103 Grand Forks, ND 58202

(701) 777-3132

Dr. Munsell McPhillips Science, Technology and Energy Division Alabama Department of Economic and Community Affairs 3465 Norman Bridge Road Montgomery, AL 36105

(205) 284-8952

Mr. Egils Milbergs President Institute for Illinois 525 School Street, S.W. Suite 304 Washington, D.C. 20024

(202) 488-0714

Mr. Terry Montgomery Acting President Greater Minnesota Corporation 900 Second Avenue S Suite 440 Minneapolis, MN 55402

(612) 347-9292

Dr. Randy Moon Science Advisor State of Utah Office of Planning and Budget Washington, D.C. 20002 116 State Capitol Salt Lake City, UT 84114

(801) 538-1038

Ms. Lari Murry Director Research Programs Oklahoma Center for the Advancement of Science and Technology 6601 Broadway Oklahoma City, OK 73116

(405) 841-5143

Mr. William Ocasio Executive Director Governor's Economic Advisory Council Commonwealth of Puerto Rico P.O. Box 42001 San Juan, PR 00940-2001

(809) 722-8660

Dr. S. John Owen Chairman Department of Electrical and Computer Engineering Oregon State University Corvallis, OR 97331

(503) 754-3617

* Mr. Norm Peterson Special Assistant to the Strategic Planning Group Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439

(312) 972-7229

Mr. Paul B. Phelps Senior Associate TvT Associates 503 Capitol Court, N.E. Suite 300

(202) 546-4043

Mr. Donald Phillips
Executive Director
GUIRR
National Academy of Sciences
2101 Constitution Avenue, N.W.
Washington, D.C. 20418

(202) 334-3486

Dr. Herbert Rabin
Director
Engineering Research Center
College of Engineering
University of Maryland
College Park, MD 20742

(301) 454-7941

Ms. Lorree A. Ratto
Public Information Officer
State of Nevada
Washington Office
444 N. Capitol Street
Suite 232
Washington, D.C. 20001

(202) 624-5405

Mr. Scott Rowan
Industrial Representative
Maryland Business Assistance
Center
State of Maryland
45 Calvert Street
Annapolis, MD 21401-1907

(301) 974-2945

Mr. Wayne E. Sauseda State of California Washington Office 444 N. Capitol Street, N.W. Suite 305 Washington, D.C. 20001

(202) 347-6891

Mr. Roger Schinness Executive Director Board of Regents Kneip Building Pierre, SD 57501

(605) 773-3455

Mr. Bernard J. Schroer Director Johnson Research Center University of Alabama Huntsville, AL 35899

(205) 895-6361

* Dr. Bassam Shakhashiri
Assistant Director for
Science and Engineering
Education
National Science Foundation
1800 G Street, N.W.
Room 516
Washington, D.C. 20550

(202) 357-7557

Mr. John Smolak
Assistant Director
Industrial Development
Governor's Office of Community
and Industrial Development
Building 6, Room B-517
State Capitol Complex
Charleston, WV 25305

(304) 348-2234

Mr. John J. Straus
Executive Director
Governor's Commission on
Science and Technology
100 West Randolph Street
Suite 3-400
Chicago, IL 60601

(312) 917-3982

Mr. Rick Tremblay
Administrator
Division of Science and
Technology
Department of Commerce
Hall of Mirrors, 2nd Floor
700 West State
Boise, ID 83720

(208) 334-2470

Dr. Thomas E. Wade Associate Dean for Research College of Engineering University of South Florida 4202 Fowler Avenue Tampa, FL 33624

(813) 974-3786

* Dr. Kenneth Wilson Director Cornell Theory Center 265 Olin Hall Cornell University Ithaca, NY 14853

(607) 255-9398

* Dr. Robert Yuan Senior Advisor in Biotechnology U.S. Department of Commerce The University of Maryland Department of Microbiology College Park, MD 20742

(301) 454-6698

^{*} Denotes Speaker